在过去的七十年中,G-氨基丁酸(GABA)引起了科学家在植物,动物和微生物中的普遍性以及其生理意义的极大关注,因为它是参与多种途径和过程的信号分子的生理意义。最近,食品和制药行业还显示出对GABA的兴趣显着增加,因为它对人类健康的潜在潜在好处以及消费者对促进健康功能化合物的需求,从而释放了很多GABA富含GABA的产品。然而,许多农作物物种在其可食用的部分中积累了可观的GABA水平,并可以帮助满足GABA每日摄入的摄入量以促进积极的健康影响。因此,植物育种者致力于用改善GABA含量的精英品种繁殖。在这方面,番茄(溶胶番茄)是全球生产和消费最多的蔬菜,也是一种含水果的型号,它因其积累了显着的GABA水平而受到了很多考虑。尽管已经实施了许多不同的策略,从经典的杂交到诱发诱变,但新的植物育种技术(NPBT)已经达到了最佳的GABA积累,从而导致红色成熟的番茄果实以及对GABA代谢和基因功能的启示。在这篇综述中,我们总结,分析和比较了所有有助于番茄GABA育种的研究,并就最新的NPBT进行进一步的讨论和建议,这些NPBT可以使这一过程达到更高的精度和效率。本文档还提供了指南,其他农作物的研究人员可能会利用番茄在更有效的GABA育种计划中取得的进展。
摘要:基因组编辑已成为多种物种功能研究和植物育种的主要工具。除了通过经典的 CRISPR-Cas9 系统产生敲除外,CRISPR 碱基编辑的最新发展为产生获得功能突变体提供了巨大而令人兴奋的机会。PAM 要求是 CRISPR 技术(如碱基编辑)的一大限制,因为碱基替换主要发生在较小的编辑窗口中。由于精确的单个氨基酸替换可能导致与某些域或农艺性状相关的功能,因此开发具有宽松 PAM 识别的 Cas9 变体对于基因功能分析和植物育种至关重要。最近,识别 NGN PAM 的 SpCas9-NG 变体已在植物中成功测试,主要是在单子叶植物中。在这项研究中,我们研究了 SpCas9-NG 在模式苔藓 Physcomitrella patens 和两种茄科作物(番茄和马铃薯)中对经典 CRISPR 基因敲除和胞嘧啶碱基编辑的效率。我们发现 SpCas9-NG 允许靶向非典型 NGT 和 NGA PAM,大大扩展了基因组编辑的范围。我们在研究中开发的 CRISPR 工具箱为模式植物和作物开辟了新的基因功能分析和植物育种前景。
1 昆士兰科技大学未来环境、机器人与自主系统研究所,2 George St, Brisbane, QLD 4000,澳大利亚;dmitry.bratanov@qut.edu.au (D.B.);felipe.gonzalez@qut.edu.au (F.G.) 2 维多利亚州农业研究中心,维多利亚州经济发展、就业、交通与资源部,Rutherglen, VIC 3083,澳大利亚;kpowell@sugarresearch.com.au 3 植物生物安全合作研究中心,Bruce, ACT 2817,澳大利亚;john.weiss@ecodev.vic.gov.au 4 维多利亚州农业研究中心,维多利亚州经济发展、就业、交通与资源部 AgriBio 中心,5 Ring Road, Bundoora, VIC 3083,澳大利亚* 通信地址:f.vanegasalvarez@qut.edu.au;电话:+61-7-3138-4593 † 当前地址:Sugar Research Australia, Meringa, QLD 4865, Australia。
威斯康星州土壤测试计划和养分施用指南最初是在 20 世纪 60 年代初制定的。此后,指南经过多次修订,以反映研究进展、额外的相关性和校准数据以及哲学观点的转变。最新修订纳入了额外的研究数据,包括对玉米 N 施用率指南的最大氮回报 (MRTN) 理念的更新,以及使用美国农业部自然资源保护局 (USDA-NRCS) 数据库的数据定义土壤组和土壤产量潜力的新方法。威斯康星州常规农场土壤 (RFS) 计算机程序已被威斯康星州农业、贸易和消费者保护部 (WDATCP) 认证的土壤测试实验室用来生成养分和石灰建议,该程序已更新以反映本文档中的更改。本出版物中的指南已纳入营养管理规划软件 SnapPlus ( http://snapplus.wisc.edu/ )。