摘要 干旱对全球粮食安全构成了巨大挑战,特别是在气候变化的背景下。基因工程是一种有希望的解决方案,可以开发能够抵御缺水同时保持生产力的抗旱作物。本文概述了旨在提高作物抗旱性的基因工程技术的现状及其对粮食安全的影响。了解植物对干旱胁迫的生理和分子反应对于确定基因操作的目标基因和途径至关重要。各种基因工程方法,包括转基因技术、标记辅助选择、基因组编辑和合成生物学,为提高作物的抗旱能力提供了多种工具。尽管转基因抗旱作物具有潜在的好处,但采用转基因抗旱作物仍面临监管、社会经济和环境挑战。协调监管框架、解决公众关切和促进公平获取技术对于充分发挥农业基因工程的潜力至关重要。展望未来,基因组编辑技术的进步、组学方法的整合和气候适应性育种计划有望为开发作物的定制抗旱性状。通过促进跨学科合作与创新,基因工程为建立更具弹性和可持续性的粮食系统提供了途径,能够在气候变化下确保子孙后代的粮食安全。
摘要:生物限制因素包括病原真菌、病毒细菌、食草昆虫以及寄生线虫等,造成作物产量损失和品质下降,常规管理措施对这些生物限制因素的效果有限。转基因技术的进步为改良作物的生物抗性提供了直接而有方向性的途径。目前,通过异源表达外源基因和RNAi技术,已培育出上百个抗食草昆虫、病原病毒和真菌的转基因事件和数百个抗性品种,并获准种植和上市,显著减少了产量损失和品质下降。然而,通过过量表达内源基因和RNAi技术进行抗细菌和线虫的转基因改良的探索尚处于试验阶段。 RNAi 和 CRISPR/Cas 技术的最新进展为提高作物对病原细菌和植物寄生线虫以及其他生物限制的抵抗力开辟了可能性。
木材生物质量作物用于能源和农业L. Easson环境和可再生能源中心,农业食品和生物科学研究所,大型公园,大型公园,希尔斯伯勒公司,Co. Down,bt26 bt26 bt26北爱尔兰[电子邮件:lindsay.easson.easson.easson.easson@afbini.gov.uk],同时又可以挑战这些范围,同时又可以挑战这些企业,而这些措施都可以进行挑战。企业在技术上是可行的,环境可持续的,在经济上可行的,适当的,并且没有违反政府和欧盟法规!作为SRC柳树和森林产品用于生物质的生产和使用已被其他扬声器所涵盖,我将寻求探索可能阻止生物量作物的问题,同时又提到一些木本的生物量作物,这些木质生物量在北爱尔兰可能有特定的利基市场。生物质作物可能会吸引:劳动力低下 - 适合兼职的半退休农民!生物修复的范围 - 可以通过门费来增加价值问题是: -
为了成功支持长途飞行或深空任务,例如通过 Artemis 系列任务 (NASA 2020) 计划的任务,必须满足太空机组人员的基本代谢和营养需求。目前,宇航员通过补给任务获得支持,迄今为止所有载人任务都使用补给任务 (Niederwieser 2018)。补给任务很难在深空支持,因此提出了大规模生产食品棒等制造解决方案。然而,目前还没有长期研究这种饮食对宇航员健康的影响。新鲜的植物作物,特别是绿叶蔬菜,既能满足基本的代谢需求,又能促进多样化的微量营养素平衡。富含抗氧化剂的植物也可能对深空辐射的有害但尚未完全了解的影响提供一些保护。近年来,种植植物作物作为宇航员饮食的主要组成部分已被排除在近端任务之外。对于近端任务,盈亏平衡点有利于补给发射。虽然增加用于食品生产的生命支持系统会增加初始发射质量,但会降低补给要求。这些混合系统的盈亏平衡计算表明,在为期 3 年、有 6 名机组人员的任务后,它们将是可行的。这大约是计划中的火星任务的持续时间。
气候变化是对全球农作物生产力降低的全球粮食安全的威胁。粮食安全是利益相关者和政策制定者的关注问题,因为预计未来几年全球人口将绕过100亿。通过现代育种技术改进作物,以及微生物组应用中有效的农艺实践,并利用未充分利用的农作物的自然变化是满足未来食物需求的绝佳方法。在这篇评论中,我们描述了下一代繁殖工具,可通过开发气候富裕的优越基因型来应对全球粮食安全的未来挑战,可用于增加农作物的产量。基因组辅助育种(GAB)策略的最新创新允许建立高度注释的作物泛基因组,可以捕捉遗传多样性(GD)的完整景观(GD),并重新接收一种物种的丢失的基因库。Pan-genomes提供了新的平台来利用这些独特的基因或遗传变异来优化育种计划。下一代定期间隔短的短篇小说重复/CRISPR相关(CRISPR/CAS)系统的出现,例如主要的编辑,基础编辑和DE NOVA驯化,已经制度化了基因组编辑的想法,即对作物的改进进行了改进。此外,包括Cas9,cas12,cas13和cas14在内的多功能CAS直系同源物的可用性提高了编辑效率。现在,CRISPR/CAS系统在作物研究中有许多应用,并成功地编辑了主要农作物,以产生对非生物和生物压力的抗性。通过采用高通量表型方法和大数据分析工具,例如人工智能(AI)和机器学习(ML),农业正朝着自动化或数字化方向发展。将速度育种与基因组和现象工具的整合可以允许快速基因识别,并最终加速作物改善计划。此外,下一代多学科繁殖平台的整合可以开放令人兴奋的途径,以开发出适合全球粮食安全的气候就绪农作物。
摘要由于树木的常规育种和克隆繁殖作物所固有的局限性,因此基因编辑引起了极大的兴趣。数十篇已发表的论文证明了克隆作物和树木中基于CRISPR的系统的高效率。预计“清洁”编辑的机会将避免或减轻许多国家的监管负担,并可能改善市场接受。然而,迄今为止,几乎所有对树木和克隆作物的研究都保留了基因组中的所有基因编辑机制。尽管基因编辑效率很高,但技术和监管障碍可能会极大地限制商业用途的进展。技术障碍包括困难和缓慢的转化和再生,开花或克隆系统的延迟发作,这些系统使CRISPR相关基因的性隔离变得难度,效率低下的切除系统可以启用功能性(蛋白质或RNA加密的蛋白质或RNA加密DNA),以及狭窄的宿主范围或有限的基因范围或有限的基因上的变速器系统。调节性障碍包括诸如基因编辑植物(如转基因作物)的欧盟中,以及基于方法的许多形式的基于方法的系统,这些系统基于方法与产品新颖性进行了严格调节,因此很大程度上应用于每个插入事件。其他主要障碍包括关于国际贸易方案的规定以及对美国国家环境政策法的遵守情况。《 USDA Secure Act》已迈出了基于科学和风险的更大的一步 - 基于方法和插入事件 - 系统,但在美国及其他地区需要进一步的监管和法律创新。
现代品种的产量较高,对环境压力的耐药性比以前的菌株在过去半个世纪促进了全球粮食安全。但是,开发具有理想特征的新品种所需的精度和时间,以适应气候变化,并需要大大改善人口增长的快速增长。本评论对主要谷物,玉米,小麦和大麦的基因组编辑状态进行了分析。因此,该评论不仅为读者提供了基因组编辑的最新应用,以改善谷物的特质,而且还讨论了技术局限性和法规挑战,这些技术需要克服该技术以在全球农业中产生影响。Johannes Buyel,Fraunhofer分子生物学和应用生态学IME,Forckenbeck- Strasse 6,52074 Aachen,德国,德国
许多现有文献都集中于采用通用农作物对农业结果的直接影响,并在较小程度上对环境和人类健康的影响。采用因果分解方法的最新研究促成了我们通过环境管理的变化对转基因农作物采用的直接和间接影响的理解,包括对产量,森林砍伐,生物多样性和人类健康的效果。他们的发现描绘了采用转基因作物的细微景象,对产量和对农药使用,生物多样性,森林砍伐和人类健康的产量和影响的影响大多。这些研究还发现,由于采用了抗昆虫抗性的转基因作物而导致的杀虫剂施用毒性降低,因此可能会因使用草甘膦的使用增加而产生负面影响。但是,少数评估长期后果的研究表明,如果耐药性不受很好的管理,短期福利可能会降低。在适当的情况下,新的结果表明,通用农作物的采用在本地增加了森林砍伐,而先前的研究发现了采用GM农作物的全球效果。最后,采用转基因作物对生物多样性的影响的证据混合在一起。例如,最近的一项研究发现,尽管转基因作物对鸟类多样性的总体影响很小,但总体作用是对昆虫物种的积极影响以及对植物和食物种子物种的负面影响。尽管这些研究极大地提高了我们对转基因作物的直接和间接环境影响的理解,但它们仍然无法完全评估对未采用GM作物的地区和地区的溢出影响。
您是否观察到社区中的某些人在种植和出售蔬菜作物和观赏植物?作为一名年轻的企业家,在加纳生产蔬菜和观赏植物可能是一个有益的盈利企业。观赏植物用于增强许多新房屋的景观,并且凭借正确的技能和知识,您可以将其转变为成功的企业。在本节中,我们将首先探讨成功的植物作物和观赏植物企业的成功启动套餐的特征。此外,本节旨在帮助学习者分类蔬菜作物和观赏植物企业成功生长的特征和模式。本节的相关性是为了帮助您获得有关如何成功生产蔬菜作物和观赏植物的知识和技能,以较低的成本吸引更多的加纳人购买这些植物。本节还将向您介绍一些创新和新兴技术,以改善全球农业生产。它还将帮助您评估这些技术在蔬菜作物和观赏植物生产中的应用。您将研究组织培养物在植物作物和观赏植物企业中的使用和重要性。在本节的学习旅程结束时,您将能够识别和解释农业中使用的各种新兴技术,例如温室,智能农业,自动化等。本节的相关性是为了帮助您获取有关用于使种植蔬菜作物和观赏植物更容易的新兴技术的知识。再次,本节旨在增强您对创新和技术的欣赏,以及它们如何提高资源效率,提高植物健康并提高作物产量。
摘要 植物能产生和释放多种香气化合物,这些香气化合物被广泛应用于化妆品、医疗保健和食品工业中。近年来,香气化合物的研究取得了很大进展,对于一些有价值的经济作物,包括粮食作物、水果、蔬菜和花卉,主要的香气化合物已被鉴定出来。本文总结了香气化合物对作物和人类的重要作用和巨大潜力。香气化合物主要来源于植物的四大生物合成途径,包括脂肪酸、氨基酸、萜类化合物和类胡萝卜素途径,产生各种物质,包括酯、醇、醛、酮、萜烯和含硫化合物等。重要的是,我们讨论了基因工程的发展及其在增强植物香气方面的应用潜力,特别是CRISPR/Cas9系统。我们希望本综述能为经济作物的香气改良提供参考。