执行摘要 背景 本报告旨在根据欧洲当前的能源危机和气候中和目标,研究批发电力市场设计和拟议的变革和干预措施。虽然我们讨论的大部分内容都是由我们所面临的危机引起的,但任何短期行动都可能产生持久的影响,我们得出了一些初步结论,即在欧洲试图摆脱这场危机、走向净零排放之际,这对能源市场监管意味着什么。 批发和零售电力市场紧密相连,本文是我们最近关于零售能源市场的 CERRE 论文(von der Fehr 等人,2022 年)的配套论文。这场由俄罗斯入侵乌克兰引发的欧洲能源价格和供应危机是严重的,在天然气和电力单一市场的历史上是史无前例的。它正在影响家庭、行业和面临流动性问题和/或破产风险的能源公司。这给能源分析师、监管者和政策制定者敲响了警钟,让他们意识到净零能源系统的必要性和影响,该系统的边际能源单位价格将很高。欧洲天然气和电力市场运作的几点从一开始就很明确: ➢ 首先,欧洲人在批发市场层面是同舟共济的,这场危机需要采取联合行动。尽管各国的提议各不相同,但欧盟团结机制已经启动,欧盟委员会提出了新的共同方针,并得到了欧盟理事会的支持。 ➢ 其次,随着冬季的临近,天然气供应可能非常紧张,依赖俄罗斯天然气的国家将尤其需要综合能源市场来支持它们。 ➢ 第三,气候灾害对能源价值链和电力输出的影响加剧了天然气和电力价格紧缩的局面。天气条件是设计未来电力市场的重要考虑因素。 ➢ 第四,市场通过在稀缺时期提高价格来提供供应安全,为某些人创造暴利,并使一些市场参与者面临未对冲的高价或某些客户无力支付的风险。 ➢ 第五,政治上不可避免地担心高价格对欧洲家庭和工业的分配影响,特别是在高通胀和货币政策紧缩的背景下。国家工业的竞争力是整个内部市场关注的问题。这种影响应该在临时基础上得到充分解决。
对该术语的定义虽然物质富裕在过去十年中有所增加,但时间富裕有所下降(Giurge,Whillans&West,2020年; Williams,Masuda&Tallis,2016年)。2018年,有80%的美国居民报告说,他们“从未有足够的时间” - 自2011年以来增加了10%(Whillans,2019; Rheault,2011)。没有足够的时间是一种影响全球人的人的感觉(Hamermesh,2019年),其中包括低收入括号的人到最富有的人(Giurge等人,2020年)。这些社会发展导致了一系列研究,研究了“时间贫困”的概念,这是指太多要做的敏锐感觉,没有足够的时间去做(Goodin等,2005; Giurge等,2020; Perlow,perlow,1999; Rudd,2019; Trupia&Mogilner,20223; Rudd,2019; Rudd,2019;将时间视为基本资源和“生命的货币”(Krueger,2009; Mogilner等,2018),“时间贫困”一词从收入贫困的观念中借鉴(Williams等,2016)。各种称为“时光之城”,“时间饥荒”,“时间压力”,“时间压力”,“时间紧缩”,“忙碌”或文献中的“时间限制”(Williams等人,2016年),使用两种主要方法研究了时间贫困的概念。一些学者通过考虑人们白天在特定活动上花费的客观时间来判断一个人剩下的时间(AS,1978; Poortman,2005)。其他学者相反,将时间贫困作为一种感知现象(Lehto,1998; Zuzanek,2004),衡量了人们对当天有多少可用时间(或少量)的时间。后一种方法可容纳发现,表明Peo-Ple报告的时间贫困与客观时间使用可能有所不同。例如,当人们花一些时间帮助他人时,人们会感到贫穷(Mogilner,Chance和Norton,2012年)。由于对政策和社会福祉以及消费者的行为和成果的更大影响,即使不是绝对反映了观点的时间赤字,也是当前的研究如何概念化时间贫困。
2020-2029 年网络战略计划由欧洲空中航行安全组织网络管理员和网络运营利益相关者(空中导航服务提供商、空域用户、机场和军方)共同制定。网络战略计划阐述了网络的长期前景,旨在确定实现 RP3 和后续发展网络性能目标的主要步骤。网络战略计划已于 2019 年 6 月 27 日获得网络管理委员会批准(如有监管变化,则需要重新协商),并已通过欧洲委员会关于 [xxx] 的决定正式通过。在未来 10 年内,预计空中交通将继续快速增长,需求也将波动。ATM 网络容量和可扩展性应相应发展,以限制预期的 ATFM 延迟增加。在此背景下,网络战略计划定义了为实现网络愿景而应遵循的战略方向,促进了以网络为中心的方法的必要性,这意味着网络中的所有 ATM 利益相关者都将能够认识到网络改进对所有人都有益,无论是在网络层面还是在本地层面。网络战略计划定义了未来十年网络发展的愿景,将其实施转化为 10 个战略目标,这些目标将通过涉及 NM 和所有运营利益相关者(ANSP、空域用户、机场和军队)的广泛协作决策过程 (CDM) 来实现。欧洲网络正经历容量紧缩,通过 RP3 影响整体网络容量,网络战略计划定义了在头五年内要实施的几项举措,以解决容量和飞行效率的改进问题。网络战略计划包括与空域重新配置、卓越运营和机场全面融入网络相关的具体行动,旨在确保在 RP3 期间妥善管理网络性能恢复。这是对未来十年总体战略愿景的补充。环境可持续性将得到进一步加强,并将根据 SES 绩效目标获得必要的优先考虑。ATM 网络的所有合作伙伴将合作,以实现更好的轨迹并加快实施支持绿色航空的创新。与此同时,支持可互操作且安全的信息管理系统和工具的新运营概念将成为帮助解决容量挑战和提供所需运营绩效的关键。这包括本地级别的系统和工具,以及将经历广泛现代化过程的网络管理器系统和工具。网络战略计划支持更专注于创新概念的 SESAR 研发,例如 4D 轨迹管理、目标时间、网络内机场的集成和 SWIM,同时确保在所有网络利益相关者中以协调的方式验证和实施新的运营概念。
全球事件影响埃及市场的全球事件,例如Covid-19,乌克兰的俄罗斯战争和以色列 - 哈马斯危机已经统一影响了埃及的经济 - 导致埃及英镑贬值,高通货膨胀,最重要的是贸易,贸易,缺乏进口货币。俄罗斯入侵乌克兰破坏了国际小麦贸易市场,因为两国占全球小麦出口的近30%,并且是中东和北非的重要供应商。随着埃及开始从1922年初俄罗斯战争开始,高小麦和植物油价格再次上涨。根据食品和农业组织的食品价格指数(FPI)(衡量国际食品价格的每月变化),FPI在2022年平均得到143.7分,比2021年(自1990年以来的最高记录)增长了14.3%。更重要的是,对于埃及,小麦价格平均高于其价值56.2%。1由于乌克兰的俄罗斯战争,小麦价格上涨,埃及政府在2023年将小麦购买的预算翻了一番,达到60亿美元。俄罗斯的入侵还导致国内食品价格飙升,并限制了外币进口的可用性 - 进一步损害了对原始饲料材料(例如大豆)的机会。此外,由于埃及非常依赖旅游业,因此外币紧缩使旅游业的减少加剧了。货物的积压导致食品价格上涨。在俄罗斯在乌克兰战争之前,俄罗斯人和乌克兰人代表了很大一部分游客,并且随着以色列 - 哈马斯危机的持续,旅游业进一步下降。最后,其他全球因素威胁着埃及进口农产品的能力,例如:中国领导的农业进口需求增加;由于干旱而减少了供应;收紧了主要出口国的小麦,玉米和大豆的供应;高能价格增加了肥料,运输和农业生产的价格;以及施加某些农产品的出口禁令的国家。自2022年初以来,埃及市场的通货膨胀压力导致总体进口量的放缓和积压的商品持续下降。在2023年10月底,埃及中央银行报告的年通货膨胀率为35.6% - 主要是由于2022年10月的食品价格增长了71.7%(图1)。世界银行还报告说,埃及是真正的食品通货膨胀的世界顶级国家,名义粮食通货膨胀是第五(见表1和图2和图3)。
在这篇评论中,我们讨论了黑洞信息悖论方面的一些最新进展。在深入研究之前,让我们先讨论一下总体动机。研究量子引力的主要动机之一是了解宇宙的最初时刻,我们预计量子效应占主导地位。在寻找这一理论时,最好考虑更简单的问题。一个更简单的问题涉及黑洞。它们的内部也包含一个奇点。这是一个各向异性的大挤压奇点,但这也是量子引力必不可少的情况,因此很难分析。然而,黑洞为我们提供了从外部研究它们的机会。这更简单,因为远离黑洞我们可以忽略引力的影响,我们可以想象提出尖锐的问题,从远处探测黑洞。这些问题之一将成为这篇评论的主题。我们希望,通过研究这些问题,我们最终能够理解黑洞奇点,并为大爆炸吸取一些教训,但我们不会在这里这样做。70 年代对黑洞的研究表明,黑洞表现为热物体。它们的温度会导致霍金辐射。它们还具有由视界面积决定的熵。这表明,从外部的角度来看,它们可以被视为一个普通的量子系统。霍金通过我们现在所知的“霍金信息悖论”反对这一想法。他认为黑洞会破坏量子信息,而宇宙的冯·诺依曼熵会因黑洞形成和蒸发的过程而增加。90 年代使用弦理论(一种量子引力理论)的结果为研究非常具体的引力理论的这一问题提供了一些精确的方法。这些结果强烈表明信息确实会出现。然而,目前的理解需要量子系统具有某些对偶性,而时空的几何形状并不明显。在过去的 15 年中,人们对引力系统的冯·诺依曼熵有了更好的理解。熵的计算也涉及表面面积,但表面不是视界。它是一个使广义熵最小化的曲面。这个公式几乎和黑洞熵的贝肯斯坦公式一样简单 [1,2]。最近,该公式被应用于黑洞信息问题,提供了一种计算霍金辐射熵的新方法 [3,4]。最终结果与霍金的结果不同,但与幺正演化一致。细粒度熵公式的第一个版本由 Ryu 和 Takayanagi [5] 发现。随后,许多作者对其进行了改进和推广 [3,4,6–11]。最初,Ryu-Takayanagi公式被提出来计算反德西特时空中的全息纠缠熵,但目前对这个公式的理解更为普遍。它既不需要全息术,也不需要纠缠,也不需要反德西特时空。相反,它是与引力耦合的量子系统的细粒度熵的通用公式。
文件名描述dsgnwhsh_whoosh dark-abyss breeze_b00m_mawds.wav airy,未来派的woosh woosh with gun shot型共振。dsgnwhsh_whoosh dark-casper_b00m_mawds.wav动态,电子驱动器,带有数字混响。dsgnwhsh_whoosh深色curs_b00m_mawds.wav激光型切片声和法兰共振咳嗽。dsgnwhsh_whoosh dark-evil East_b00m_mawds.wav密集,和谐复杂的合成器以缓慢的攻击和缓慢释放命中。dsgnwhsh_whoosh dark-imposter_b00m_mawds.wav电子风,带有长尾巴和数字文物的数字风。dsgnwhsh_whoosh dark-whizz_b00m_mawds。dsgnwhsh_whoosh dark-little Nightmares_b00m_mawds.wav动态woosh,带有渐变动力学和数字尾巴。dsgnwhsh_whoosh dark-malfoy_b00m_mawds.wav尖锐,清洁过渡效果,带有毛刺伪影和噪音尾巴。dsgnwhsh_whoosh dark-unholy_b00m_mawds.wav密度,机械,复杂的Woosh,具有高科技数字零件。dsgnwhsh_whoosh dark-void seeker_b00m_mawds.wav airy uny insing ins and ins the-wav and ins in trundistist and tunly offentist and tuneristist。dsgnwhsh_whoosh light-charmed_b00m_mawds.wav高频,金属woosh带有有需要的in Harmonic共振。dsgnwhsh_whoosh light-esoterico_b00m_mawds.wav电子,HUD响起woosh woosh and Chorus and langing。dsgnwhsh_whoosh浅色dust_b00m_mawds.wav外星人,未来派的woosh,带有高螺距闪光和中范围的拳头。dsgnwhsh_whoosh light-healing grace_b00m_mawds.wav高高倾斜,通风的woosh声音,带有闪闪发光的共鸣。dsgnwhsh_whoosh light-irari_b00m_mawds.wav快速,数字冲击声,带有渐变攻击和闪闪发光的尾巴。dsgnwhsh_whoosh灯光lance_b00m_mawds.wav电磁woosh带有数字小故障工件。dsgnwhsh_whoosh light-mystisweep_b00m_mawds.wav sci-fi woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh woosh。dsgnwhsh_whoosh light-serenity_b00m_mawds.wav反针效应,然后是数字冲击声。dsgnwhsh_whoosh light-sprite_b00m_mawds.wav立体声基于毛孔,带有小故障,不断发展的音色。dsgnwhsh_whoosh light-twilight_b00m_mawds.wav卷曲,高通滤波的woosh和远处的混响尾巴。dsgnwhsh_whoosh中性 - 抗原dsgnwhsh_whoosh中性 - 弧形gust_b00m_mawds.wav枪射击类型的冲击,带有法兰,回响的尾巴。dsgnwhsh_whoosh中性boomerang_b00m_mawds.wav通过数字卷积以电子增强的woosh。dsgnwhsh_whoosh中性bolt_b00m_mawds.wav高高的woosh,带有颗粒状伪像和金属冲动。dsgnwhsh_whoosh中性consumed_b00m_mawds.wav反向电子噪声,快速释放和光谱形状。dsgnwhsh_whoosh中性fast_b00m_mawds.wav频谱woosh带有颗粒状螺距转移和相位的共振。dsgnwhsh_whoosh中性的力量_b00m_mawds.wav紧缩,爆炸性过渡,卷积和空气。dsgnwhsh_whoosh中性obsidian sway_b00m_mawds.wav vocoder处理的woosh woosh具有共振剂过滤和外星品质。dsgnwhsh_whoosh中性 - 搜索器_b00m_mawds.wav白噪声过渡,数字,人工调制尾巴。dsgnwhsh_whoosh中性snitch_b00m_mawds.wav高螺距,颤抖的HUD型Woosh带有光谱形状。dsgnwhsh_whoosh中性 - 造型zephyr_b00m_mawds.wav光谱合成类型过渡性声音,具有数字脉冲响应。magevil_bed dark-Energy提取_b00m_mawds.WAV持续,数字湍流,用颗粒状云。magevil_bed dark-sinister aura_b00m_mawds.wav常数,不断发展,数字垫,具有inharmonic共振和光谱变形。
1977 年 8 月 4 日,美国国会通过了《能源部组织法》。成立新部门的根本原因是美国面临着日益严重的不可再生能源短缺问题,这种短缺加上我们对外国供应的日益依赖,对美国的国家安全以及美国公民的健康、安全和福利构成了严重威胁。为了解决这一问题,美国能源部成立,旨在全面、集中地关注能源政策、监管以及研究、开发和示范。该法案强调了该部门的使命,即提供科学发现、能力和主要科学工具,以改变对自然的理解,并促进美国的能源、经济和国家安全。国会认识到对手会试图破坏国家的科学研究和能源安全,因此确保新部门将获得适当的资源来实施其安全、反情报和情报政策。四十三年后,我们在国家安全创新和工业基础方面面临着类似的挑战。能源资源和安全对我们的国家安全和经济繁荣至关重要,人工智能 (AI) 和机器学习 (ML) 的革命也同样重要。人工智能和机器学习的进步正在迅速渗透到科学和技术的各个领域,并有望提高运营效率。深度学习技术使发现可以扩展到各个经济领域,从利用新方法创造可再生能源到优化运输路线,再到阅读医学图像,再到预测蛋白质折叠途径以发现药物。关键驱动因素是大型数据集、计算能力和数学/算法开发,所有这些都是能源部的关键能力。鉴于计算和存储所需的大量能源资源,获得具有成本效益和可靠的能源供应也至关重要。美国再次参与了一场竞赛,以确保我们和我们的盟友成为推动世界未来优势的科学和技术的卓越生产者。这场竞赛的结果并不确定。中国计划每年投入 300 亿美元,到 2030 年实现人工智能领域的领先地位,而目前估计,到 2022 年,美国政府在国防以外的支出水平将达到每年约 20 亿美元。然而,美国人民和美国政府拥有巨大的资源可供使用。如果获得适当的授权和资助,能源部国家实验室系统有可能在人工智能领域引领世界。鉴于能源部和国家实验室设施的现有和计划投资,这些设施可以生成大量数据集,以及可以处理数据的百亿亿次级计算机,从人工智能设计的工作流程到无论是在大型科学项目还是基础设施和采购中,到人工智能支持的科学“理解”,即解决因果关系并得出科学定律。能源部实验室可能是唯一能够将高性能计算机与先进光子源(阿贡)和散裂中子源(橡树岭)等发现机器连接起来的地方,从而允许对数据和流进行现场机器学习。它们还有可能将计算机科学家与领域专家聚集在一起,其规模是行业和学术界无法比拟的。国家人工智能指令呼吁努力提高访问
2024 年有望成为量子计算的突破之年。我们即将看到量子和人工智能 (AI) 之间共生关系的出现。这具有巨大的潜力,可以推动这两个领域的进步,突破可能的界限。由于我们终于达到了摩尔定律的极限,我们需要替代方法来提高计算性能。将量子计算与人工智能结合起来正在开启一些令人兴奋的可能性。它是双向的。我们可以越来越多地使用人工智能来检测和补偿量子计算中的异常——目前阻碍其快速发展的因素——另一方面,利用量子计算来扩展人工智能的发展。我们能够利用量子系统的巨大计算能力只是时间问题——这将推动药物发现等领域的突破,并通过在眨眼间处理复杂算法的能力彻底改变金融市场。但一些专家表示,我们可能还需要 10 年才能达到这一点。尽管有可能比传统的硅基计算快很多倍,但这项技术仍然容易出错。用于量子计算的量子比特必须足够稳定才能产生有意义、准确的结果。如果它们不稳定,那么结果就不可靠。尽管我们在获得和保持量子系统稳定状态方面取得了进展,但进展仍然不够快。当然,启动和运行量子计算机比传统计算机要复杂一些。在超导量子比特技术中,量子比特使用微波进行控制和测量。它们本质上很脆弱,容易受到周围环境噪声的影响——这意味着它们会受到热噪声、电磁干扰和材料缺陷等因素的影响。即使是简单的操作或测量也会导致错误。这意味着量子计算必须始终在高性能计算系统上进行交叉检查——这一事实严重削弱了当前量子计算机的实用性。尽管 HPC 系统是世界上最强大的传统计算机,但在某些计算中,其速度比量子计算机慢很多倍。如今,为了微调量子比特,我们手动优化微波脉冲的形状——但规模有限,因为实际上,人类根本不可能同时对数十个量子比特进行这样的优化。这时,人工智能就可以发挥作用了。它可以学习如何优化微波脉冲,以便更好地同时控制多个量子比特,从而减少量子误差。除此之外,人工智能还可以用来识别哪些量子比特应该优先用于特定的量子计算。另一方面,更强大的量子计算将推动更快、更先进的人工智能系统的开发。而且,您无需成为量子专家即可了解这种组合为何如此令人兴奋。2024 年,我们还可能看到优化任务分配的发展。在这里,我们将改进 AI 驱动的计算代理来评估计算任务,并确定它们是否更适合量子计算机、传统计算机或混合组合。这是因为在许多任务中,高性能计算机 (HPC) 的速度仍然比量子计算机更快——例如,在乘法和加法等简单的数学函数中。随着我们利用 AI 算法来优化操纵量子位的方式,它可能会带来更稳定的量子操作:这是一项关键的突破,它将使我们能够迅速增加量子系统中可靠量子位的数量,超过我们今天达到的 100 个量子位。富士通正在与日本研究机构 RIKEN 合作,共同完成一项任务,通过增强硬件和软件功能将量子技术的使用率提高到 1,000 个量子位。该方法结合了 DMET(密度矩阵嵌入理论),该理论为在存在周围分子或本体环境的情况下处理有限片段提供了一个理论框架,即使片段之间存在很大的相关性