与任何其他简单的液体不同,超冷液体GA是一种复杂的液体,具有共价和金属炭。[2]元素GA形成同素[3-5]及其低熔化温度(29.8°C)的能力使其成为具有高温和电导率的无毒金属材料。[6]在1952年,F.C。坦率地假设,在由大致球形对称性的原子组成的超冷液体中,二十面体短距离阶在能量上有利。[7,8]对于Dectes,超冷液体GA中的异常结构有序在科学社区中引起了极大的关注。在以前的尝试中描述了液体GA,TSAY和WANG [9]的异常特性时,在GA的四面体上报道了由两个二聚体相互互锁的四二二聚体 - 具有四个带有四个原子的指数。与其他邻居相比,最近的邻居原子之一的键长具有更长的键长,因此四面体是不对称的。在短寿命的共价GA二聚体的情况下,键长的长度接近2.44Å是归因于从摩尔圆形动力学模拟中观察到的结构肩部。[2]但是,在群集结构中的GA – GA对分离大于2.5Å,更有可能
CCI 是由加密行业领袖组成的联盟,其使命是传播加密的好处并展示其变革前景。CCI 成员包括一些在加密行业运营的全球领先公司和投资者,包括 Andreessen Horowitz、Block(前身为 Square)、Coinbase、Electric Capital、Fidelity Digital Assets、Gemini、Paradigm 和 Ribbit Capital。CCI 成员遍布加密生态系统,并拥有共同的目标,即鼓励负责任的全球加密监管,以释放经济潜力、改善生活、促进金融包容性、保护国家安全并打击非法活动。CCI 及其成员随时准备并愿意与金融稳定委员会成员合作实现这些目标,并确保这一代和下一代最具变革性的创新扎根于美国。
摘要:底物表面的状态是某些有机化合物的升华方法产生的晶体形态的关键因素之一。在这项工作中,我们成功地准备了1,2-双(2,5-二甲基-3-噻吩基)全氟细胞烯(1A)的不同形态,这些晶体被分类为空心晶体和叶片样晶体,通过与玻璃表面相处,并与玻璃表面进行玻璃表面,并与水文表面相处。为了澄清玻璃基板每个表面上的晶体生长过程,我们研究了在升华的早期阶段附着在底物表面的米勒指数,并通过X射线衍射测量和极化显微镜散发器的晶体面晶体的晶状体生长方向和晶体生长方向。结果表明,在早期和升华阶段产生的晶体面之间的异质结会导致两种不同的晶体形态。此外,已经证实,异质结在这些晶体面之间的特定方向上发生,因为这些晶体面上的晶格点非常吻合。最后,我们展示了空心和羽毛状晶体的光学行为。
摘要:当选总统特朗普已选择亿万富翁霍华德·卢特尼克(Howard Lutnick)担任美国商务部的秘书,该部门是一个“庞大的”内阁部门,负责监督专利,国家气象局,太空卫星,科学标准,贸易限制,经济数据以及其他事项。金融服务“ Titan” Cantor Fitzgerald的董事长兼首席执行官Lutnick已经被指控将“将他的商业利益”与第二个特朗普过渡“混合”,如果他被确认为商业秘书,则可能会在其角色构成“广泛的经济政策”的角色中造成进一步的冲突。例如,已提交1000多项专利的卢特尼克(Lutnick)将监督商业部的美国专利商标局。尽管卢特尼克(Lutnick)声称他将从自己的商业帝国中脱离,但他与康托尔·菲茨杰拉德(Cantor Fitzgerald)深深地“纠缠”了,他似乎准备好与他的儿子一起工作,他的儿子为康托尔(Cantor)的主要加密货币公司Tether工作,被列为Cantor最新的Blank-Check Company of Cantor列出的最新空白合作公司。尤其是卢特尼克(Lutnick)作为加密货币的声音倡导者而闻名。卢特尼克(Lutnick)在一次行业会议上说,加密货币的领先形式应被接受“''毫无例外,无限制。'“他还是大型加密公司Tether的“关键盟友”,坎托持有约6亿美元,坎托在2024年11月加入了一个新的20亿美元贷款项目。现在,负责任的研究发现,卢特尼克在加密货币行业中的巨大股份如何与他对美国商务部的潜在控制相抵触,该部门在制定加密法规和研究加密技术方面发挥了核心作用:
摘要。本文旨在直接分析量子计算算法的能力,特别是 Shor 和 Grovers 算法,分析其时间复杂度和强力能力。Shor 算法使我们能够以比传统系统快得多的速度找出大素数的素因数。这对依赖于传统算法无法计算大素数素因数的经典密码系统构成了威胁。Grover 算法使我们的计算机系统搜索能力提高了一倍,这将对密码系统密钥和哈希的强力能力产生重大影响。我们还分析了这些算法对当今经典密码系统的影响,以及可以对安全算法进行的任何重大改进,以使其更安全。
2024 年 8 月,美国国家标准与技术研究所 (NIST) 迎来了关键时刻,发布了前三项最终确定的后量子密码 (PQC) 标准:FIPS 203、FIPS 204 和 FIPS 205。这些标准标志着密码学新时代的开始,旨在防范未来量子计算的威胁。在本次演讲中,NIST 密码技术组经理 Andrew Regenscheid 先生将详细介绍新制定的 FIPS PQC 标准。他还将讨论正在进行的标准化其他加密算法的努力,确保为当前标准中的潜在漏洞做好准备。网络安全工程师兼 NIST 国家网络安全卓越中心 (NCCoE) 项目负责人 Bill Newhouse 先生将解释过渡到这些新的抗量子加密标准的紧迫性。他还将分享实用策略和最佳实践,以促进从现有公钥加密系统向这些下一代标准的迁移。
现代软件依赖于操作的秘密 - API键,代币和凭证对于与Stripe,Twilio和AWS等服务互动的应用程序至关重要。这些秘密中的大多数存储在平台本地的秘密经理中,例如AWS Secrets Manager,Vercel环境变量和Heroku Config vars。这些系统通过集中秘密并无缝将其注入运行时环境来提供便利。但是,此集中化引入了重大风险。如果被违反,它们会暴露在其中存储的所有秘密,从而导致爆炸半径,可能会泄漏数千甚至数百万个秘密。同时,诸如.ENV文件之类的替代方案最小化爆炸半径,但缺乏防止未经授权访问所需的保障措施。开发人员在具有较大风险或复杂性较大的爆炸半径的较高风险或复杂性之间进行选择。需要的是基于混合密码学而不是信任的秘密系统,允许开发人员在而无需任何第三方保持安全的情况下对秘密进行加密。在本文中,我们使用库在运行时解密加密秘密文件的库为这些风险提出了解决方案,并用平台的Secrets Manager中分别存储了一个私钥。此方法包含漏洞的爆炸半径,同时保持.ENV文件的简单性。即使一个组件(无论是加密的文件或秘密经理)还是受到妥协的,秘密仍然安全。只有同时访问两者都可以暴露它们。
人工智能驱动的模拟器的兴起:构建新的水晶球 计算社区联盟 (CCC) 四年期论文 Ian Foster(芝加哥大学)、David Parkes(哈佛大学)和 Stephan Zheng(Salesforce AI Research) 五十年前,天气预报员努力预测明天的天气是否与今天相同。如今,天气预报通常可以准确预测未来一周或更长时间,让个人和社会能够为不再不可预见的事情做好准备。这种显著的转变在很大程度上归功于计算机,尤其是计算模拟的兴起,这是一种使用计算机预测复杂系统未来状态的方法。模拟最初是在第二次世界大战的最后几天为军事目的而开发的,现在已遍布人类社会和经济领域,为决策者提供了一个非凡的水晶球,不仅可以预测下周的天气,还可以预测飞机在不同天气模式下飞行时的表现、新药对新疾病的有效性以及未来电池中新材料的行为。计算机模拟是在计算机上执行的数学建模过程,旨在预测现实世界或物理系统的行为或结果。 1 模拟通常通过将空间(例如北美)划分为多个小单元来配置,每个小单元保存一组值(例如温度和压力)以及一组本地规则,用于更新下一个时间步骤的单元(例如,基于单元和相邻单元的当前温度和压力,一分钟后的温度/压力)。模拟运行以测量的输入(温度/压力)为种子,并反复应用其规则来随时间更新模拟系统。更准确的输入数据、更小的单元和更好的规则可以实现更高保真度的模拟(例如,下周而不是明天的良好天气预报)。计算机模拟的使用现在在社会上如此普遍,毫不夸张地说,美国和国际的持续繁荣、安全和健康在一定程度上取决于模拟能力的持续改进。如果我们能够预测两周后的天气,指导新病毒性疾病新药的设计,或者管理将生产成本和时间降低一个数量级的新制造工艺,情况会怎样?如果我们能够预测人类的集体行为,例如,在自然灾害期间对疏散请求的响应,或劳动力对财政刺激的反应,情况会怎样? (另请参阅 CCC Quad 关于疫情信息学的配套论文,其中讨论了
❖PKI涉及受信任的第三方的参与,他们验证了希望通过签发数字证书的当事方的身份。❖数字证书 / PKI证书包含有关钥匙持有人,公共密钥,到期日期以及发行其发行的证书授权的签名的信息❖值得信赖的第三方,称为注册机构,同时验证了一个人或实体的认证,并将其授予另一个机构,以指示另一个机构,以指导另一个机构。 钥匙。❖此证书(以及其中包含的公共密钥)随后可用于证明身份并实现与其他方的安全交易。