摘要:脊髓损伤(SCI)后轴突再生的主要障碍是由星形胶质细胞和小胶质细胞介导的神经炎症。我们先前证明,仅基于石墨烯的胶原凝胶可以减少SCI中的神经炎症。然而,他们的再生潜力知之甚少和不完整。此外,尽管存在与基于干细胞的治疗的应用有关的限制,但干细胞在脊髓再生中既表现出神经保护性和再生特性。在这项研究中,我们分析了人骨骨髓间充质干细胞(BM-MSC)负载的石墨烯连接胶原蛋白冰期(GR-COL)在SCI的胸腔(T10-T11)半部半分裂模型中的再生能力。我们的研究发现,BM-MSC负载的GR-COL可改善轴突再生,通过降低星形胶质细胞反应性来降低神经炎症,并促进M2巨噬细胞极化。与GR-COL和损伤组对照相比, BM-MSC负载的GR-COL具有增强的再生潜力。 下一代测序(NGS)分析表明,BM-MSC负载的GR-COL调节JAK2-STAT3途径,从而减少了反应性和疤痕形成的星形胶质细胞表型。 BM-MSC负载的GOR组中神经炎症的减少归因于Notch/Rock和STAT5A/B和STAT6信号的调制。 总体而言,基因集富集分析表明,通过调节PI3/AKT途径,局灶性粘附激酶和各种炎症途径,通过调节分子途径(例如PI3/AKT途径),通过调节分子途径(例如PI3/AKT途径),通过调节分子途径来促进轴突再生。BM-MSC负载的GR-COL具有增强的再生潜力。下一代测序(NGS)分析表明,BM-MSC负载的GR-COL调节JAK2-STAT3途径,从而减少了反应性和疤痕形成的星形胶质细胞表型。BM-MSC负载的GOR组中神经炎症的减少归因于Notch/Rock和STAT5A/B和STAT6信号的调制。总体而言,基因集富集分析表明,通过调节PI3/AKT途径,局灶性粘附激酶和各种炎症途径,通过调节分子途径(例如PI3/AKT途径),通过调节分子途径(例如PI3/AKT途径),通过调节分子途径来促进轴突再生。关键词:人骨髓间充质干细胞,RNA测序,石墨烯,胶原蛋白,冷冻凝胶,神经炎症
无抽象的无低温操作对于传播超电导率的应用至关重要,在某些情况下确实是不可避免的。在电量计算中,由于尚不可用的针对高温超导体制造的电压标准应用的约瑟夫森连接阵列,因此无法降低冰箱的大小和复杂性,以降低冰箱的大小和复合度。在INRIM开发的SNIS技术使用低温超导体,但允许在液体氦气温度上运行。因此,适用于紧凑的冷冻标准很有趣。我们研究了用DC和RF照射下的闭合循环冰箱冷却的SNIS设备。与设备的热设计有关的问题是分析的。RF步骤对观察到的连接数量的依赖性被详细说明,并解释为芯片内部功率消散的结果。
对向后兼容的需求也可能是过渡的障碍。例如,哈希功能用作数字签名中的消息消化,用于生成消息身份验证代码(MAC),用于键启用功能以及随机数字的生成。加密哈希功能也已用作基于哈希的签名的基本组件。加密哈希功能要求包括碰撞抵抗力,图像前电阻和第二次前图。SHA-1,具有160位输出长度的哈希函数[4],预计将提供80位碰撞电阻和160位的前图像电阻。许多用例依赖于这些安全属性。然而,在2005年,发现SHA-1的碰撞阻力少于80位[5]。在2006年,NIST敦促联邦机构“停止依靠在2010年底之前使用SHA-1产生的数字签名。”
具有高效率的操作和清洁能量过渡。[2]与化学成分一起,分子间相互作用直接通过将分子堆积管理到晶体中来确定有机固体的功能。与单个分子[3a,b]相比,这种能量的增加导致晶体的电子结构发生变化,这打开了调整所得有机晶体(OC)的光学,电子和传输特性的可能性。然而,这种强大的间隔相互作用可确保OC的结构元素之间有效的电荷转移,进而可以通过淬火过程降低光发射性能。[3F-K]相反,通过引入氢键[3C-E]来降低该能量的降低,可保留单个分子及其光发射特性的电子特征,并扩大了分子堆积的方式,并提供了OC生长在任意表面上的控制。反过来,这些对于轻松产生有效的连贯和不连贯的光源至关重要。[1C]
大规模储能,消费电子设备和电动汽车的快速开发提出了对电化学能源存储设备的能量密度的高度要求,这使高特异性能电池成为当前的研究热点。在大规模储能中,具有高能量密度的可再生能源的输出对于支持智能电网的开发至关重要。运输部门,尤其是电动汽车行业,严重依赖高特异性电池来扩大行驶范围,减少充电时间并提高整体车辆效率。同时,在消费电子中,对具有较长循环寿命和尺寸较小的电池的需求正在推动电池技术的持续开发。本期特刊旨在作为一个平台,以从世界各地收集尖端研究并促进高特异性电池的创新开发。通过促进学术交流与合作,我们希望加快在高能量电池中的技术突破,并将研究结果转化为各个行业的实际应用。
任何人都可以自由访问可作为“开放访问”的作品的全文。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。使用所有其他作品的使用要求正确持有人(作者或出版商)同意,如果不符合适用法律的版权保护。
Kinetis®K81MCU扩展了Kinetis MCU投资组合,具有高级安全功能,包括防僵局外围设备,启动ROM,以支持加密的固件更新,外部串行闪存闪存,AES加速器,AES加速器的自动解密,以及对公开密钥密钥的硬件支持。K81 MCU可用于满足销售点(POS)应用程序的安全标准。
abtract-由于石墨烯的独特特性,由于它的发现,因此已经提出了从化学传感器到晶体管的不同领域中的许多应用。石墨烯最重要的应用之一是在拉曼光谱法的增强中,最近引起了科学家的注意。本文研究了其作为拉曼增强的底物的潜力,称为石墨烯增强拉曼光谱(GERS)。我们使用若丹明6G(R6G)和晶体紫(CV)来说明氧化石墨烯对拉曼增强的影响。表明,与沉积在裸玻璃基板上的液溶液沉积在石墨烯基底物上沉积的若丹明6G和晶体紫溶液的拉曼峰显着增加。使用拉曼光谱仪,拍摄了这些材料的拉曼光谱,并比较了它们的图。表明,该方法可以增强若丹明6G和晶体紫的分子的拉曼信号。