NASA Glenn研究中心的低温电子组一直在努力开发电动机控制电子产品,该电子设备将在40 K的温度下运行。该组进行了测试,以确定哪些电子组件将在如此低的温度下运行。然后,确定在低温下成功运行的组件被用于设计低温运动控制器电路。建立,评估和证明是在70 K处运行的原型电机控制器电路。接下来,Glenn Researchers计划在温度更低的温度下确定电路性能 - 降低到40K。
摘要:我们在液态氦气温度(T = 2 K)上进行激光光谱,以研究用氢化动力学滴注制造的纳米镜高度的蒽晶体中的掺杂的单二苯甲烷(DBT)分子。使用高分辨率的荧光激发光谱法,我们表明,印刷纳米晶体中单分子的零子线几乎与对散装中同一来宾 - 宿主系统观察到的傅立叶限制过渡一样狭窄。此外,光谱不稳定性可与或小于一个线宽度相当。通过记录DBT分子的超分辨率图像并改变激发梁的极化,我们确定印刷晶体的尺寸和晶体轴的方向。对于一系列应用,有机纳米和微晶的电水动力印刷是感兴趣的,其中希望对具有狭窄光学转变的量子发射器进行对照定位。关键字:纳米折线,纳米晶,量子发射极,单分子,单光子源,光谱M
数千到数百万个敏感信号需要通过稀释制冷机的所有温度阶段进行传输,以操作由许多量子位组成的未来大规模量子处理器。导热同轴电缆数量的激增将超出制冷机的冷却能力,对量子核心造成不利影响。将控制电子设备降至低温允许使用现有的超导电缆,减轻低温阶段之间的热传导,并且似乎是实现操作量子位数可扩展性的明确途径。这项博士论文旨在探索在低温下将工业 CMOS 28nm 全耗尽绝缘体上硅 (FD-SOI) 技术用于量子计算应用。我们的第一个目标是将有关低温下 FD-SOI 28nm 晶体管的稀疏现有知识扩展到电路设计的实际方面,然后用于开发紧凑模型。为了加快对具有长达一小时的固有冷却周期的单个器件的表征,我们设计了一个集成电路,该集成电路多路复用了数千个具有不同几何形状和栅极堆栈类型的晶体管,用于低频测量电流-电压特性和从 300 到 0.1K 的配对分析。我们讨论并分析了不同温度下电路设计中重要量的变化趋势,例如跨导、电导和单个晶体管的跨导与漏极电流比。其次,我们探索了半导体量子器件与经典电子器件的低温共积分和全片上集成,旨在实现低至毫开尔文范围的特定测量。我们首先通过设计和表征低功耗跨阻放大器 (TIA) 来关注量子点器件的亚纳安电流测量。高增益放大器成功应用于测量单量子点和双量子点器件的电流,这些器件分别通过引线键合几毫米或片上集成几微米。为了进一步利用集成到同一基板的优势,我们将 GHz 范围的压控振荡器连接到双点的其中一个栅极,以尝试观察完全集成设备中的离散电荷泵。最后,我们提出了一种新的测量方案,利用低温电子学功能作为众所周知的反射测量法的替代方案,解决了单个量子器件栅极电容的测量问题。通过在 200 MHz 范围内集成电压控制电流激励和电压感应放大器,两者都靠近连接到 LC 槽的量子器件,器件电容变化的读出电路变成纯集总元件系统,具有谐振电路的阻抗测量,而没有任何像反射法中那样的波传播。这种方法增加了测量装置的简单性和紧凑性。我们甚至用由晶体管和电容器组成的有源电感器取代了反射法中使用的笨重无源电感器,在相同电感下面积降低了 3 个数量级,从而提供了更好的可扩展性。由此产生的电路成功测量了 4.2K 下纳米晶体管的 aF 电容变化,揭示了栅极电容中随栅极和背栅极电压而变化的振荡量子效应。在这篇论文的最后,给出了一幅与电路架构和设计相关的挑战的图景,最终目标是进入大规模量子处理时代。
手稿于2022年12月16日收到;修订了2023年2月3日; 2023年2月7日接受。出版日期2023年2月20日;当前版本的日期2023年3月24日。这项工作得到了加拿大自然科学和工程研究委员会(NSERC)的部分支持;在加拿大第一研究卓越基金的一部分;在加拿大第一研究卓越基金的一部分是由Laboratoire纳米技术纳米纳斯特梅斯(LN2),该基金是法国 - 加拿大 - 加拿大联合国际研究实验室(IRL-3463),由中心由国家de la Recherche Scorentifique(CNRS),Universitedesitédesherbrooke,Unigabrooke,Comecomeitififique(CNR)中心资助和合作。 ÉcoleCentrale Lyon(ECL)和国家科学研究所(Institut National des Sciences)贴花(INSA)LYON;并部分由魁北克人的自然与技术(FRQNT)。本文的评论由编辑F. Bonani安排。(通讯作者:Pierre-Antoine Mouny。)Pierre-Antoine Mouny, Yann Beilliard, and Dominique Drouin are with the Institut Interdisciplinaire d'Innovation Technologique (3IT) and the Institut Quantique (IQ), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, Canada, and also with the Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463,3IT,Sherbrooke,QC J1K 0A5,加拿大(电子邮件:Pierre-antoine.mouny.mouny@usherbrooke.ca)。SébastienGraveine,Abdelouadoud El Mesoudy,RaphaëlDawant,Pierre Gliech和Serge Ecoffey与Interdistut Interdisci-Plinaire d'innovation D'innovation D'Innovation Technologique(3IT),Sherbrooke,Sherbrooke,Sherbrooke,Sherbrooke,Sherbrooke,QC J1K 0A 5,CANCALAINE,CANCALAITIE,以及CANCALATO,CANCARAITAN,以及CANCACATAINIIS Nanosystèmes(LN2),CNRS UMI-3463,3IT,Sherbrooke,QC J1K 0A5,加拿大。Marc-Antoine Roux与加拿大QC J1K 2R1的Sherbrooke大学量子研究所(IQ)一起。Fabien Alibart与加拿大Sherbrooke,Sherbrooke,Sherbrooke,Sherbrooke University Institute(3IT)的互助创新创新研究所,加拿大QC J1K 0A5,也与纳米技术实验室纳米系统(LN2)一起加拿大,还与法国59650 Villeneuve-d'ascq的电子,微电子学和纳米技术学院(IENN)一起。Michel Pior-Ladrière与纳米技术实验室纳米系统(LN2),CNRS UMI-3463,3IT,Sherbrooke,QC J1K 0A5,加拿大,以及与Sher-Brooke,Sherbrooke,Sherbrooke,Sherbrooke,QC j1 cancase cancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancance of sherbrooke,QC J1K 0A5本文中一个或多个数字的颜色版本可在https://doi.org/10.1109/ted.2023.3244133上找到。<数字OBJET标识符10.1109/TED.2023.3244133
我们提供一篇博士论文,研究液氦温度下半导体器件的老化机制。基于电气测量,确定并深入研究了 4.2 K 下的相关物理老化机制。开发或扩展了低温老化模型。过去二十年来,量子计算一直是基础研究中一个非常活跃的领域。在过去的 5 年里,它已经达到了成熟的水平,商业应用触手可及。英飞凌希望通过研究不同的量子系统及其在低温下的电子环境来推动这一发展,以便操纵和读取这些系统。在半导体器件中,许多物理效应会导致器件电气参数的漂移,进而导致整个电路故障。预测这种漂移在整个生命周期中的现象对于确保电路的功能性非常重要。对于量子计算应用,需要研究低温下的退化效应,并分别开发物理模型。
3 格勒诺布尔阿尔卑斯大学,CNRS IMEP-LAHC,F-38000 格勒诺布尔,法国 通讯作者电子邮件:mikael.casse@cea.fr 我们概述了 FDSOI CMOS 晶体管在深低温下的性能,特别强调了背偏带来的好处。FDSOI 晶体管可在室温到低至 100mK 的温度下工作。测量和分析了主要的直流电特性、可变性和可靠性。我们还指出了在低温下出现的特定行为,并讨论了它们的物理起源和建模。 介绍 为了设计高效的量子计算机,需要将传统电子器件尽可能靠近量子比特 (qubit) 设备,考虑超导或 Si-spin 量子比特,以便读出和控制,从而减少对室温布线的需求 (1)。这种需求凸显了探索和开发低温 CMOS 技术的广泛重要性,其工作温度范围从 4.2K 到远低于 1K。此外,Si-spin 量子比特工艺也与 CMOS 工艺兼容,原则上可以将两者单片集成在单个芯片上 (2)、(3)。这可以为任何大规模量子处理器提供基本构建模块,通过设计可扩展的近量子比特低温电子器件来实现大规模量子比特矩阵索引,并最终开发容错通用门量子计算机 (4)。
o SBD 4 – 与政府的利益声明 o SBD 6.1 – 优先点数索取(仅限南非公司) • 此正式报价请求受《优惠采购政策框架法》和《2022 年优惠采购条例》、《一般合同条件》(GCC)以及(如适用)任何其他特殊合同条件的约束。 在中央供应商数据库 (CSD) 上注册:投标人必须在国家财政部的中央供应商数据库中,才能与 NRF 开展业务,并且 NRF 才能授予投标并签署后续合同。必须在 CSD(www.csd.gov.za)上注册,未注册的投标人的投标将不予考虑。 国家财政部联系方式:+27 (0) 12 406 9222 或发送电子邮件至 csd.support@treasury.gov.za
简介:被认为是月球南极的永久遮蔽区域(PSR),可以容纳多种资源,这些资源对于支持和推进人类对月球和其他行星体的探索至关重要。遥感数据(例如,Diviner [1])表明,PSR中的低表面温度为水冰和其他挥发物的冷捕获提供了一个有利的热环境,某些区域的温度低至20K。准确的估计了Lunar Regolith在低于100 K的pot pot pot pot pot pot pot pot pot pot pot thermant 〜100 k的距离〜100 k的距离。然而,关于月球雷果石的热物理特性的许多已发表研究都集中在150 K以上的温度上(例如2)。我们提出了实验性的努力,以测量在15-300 K的温度范围内测量直径为400-500 µm的直径玻璃珠和NU-LHT-2M月球模拟物,以及15-150 K的Apollo 11 Regolith。端盖设计以减少热量损失,并进行扩展的加热探针针,以改善测量值。初步结果表明,温度的导热率降低,低于月球雷果石的标准导热率模型预测(例如4)。干岩的低温热导率测量值可能是估计特定区域中冰或挥发性含量的基线。水冰的变化和挥发性丰度有望影响原位观察到的热导率值,或从遥感测量值中推断出来。
富兰克林·米勒是威斯康星大学麦迪逊分校机械工程系副教授。在加入该大学任教之前,米勒教授曾在 NASA 戈达德太空飞行中心的低温工程部门工作。在 NASA 任职期间,他致力于开发用于太空飞行任务的冷却系统,包括詹姆斯·韦伯太空望远镜上运行的系统。米勒教授拥有麻省理工学院机械工程博士学位和物理学辅修学位。他的博士研究工作包括模拟超流体 3He-4He 混合物的热力学行为以及开发一种用于低于 1 开尔文冷却的新型超流体焦耳-汤姆逊制冷循环。米勒教授指导过 23 名硕士生和 14 名博士生。自 2009 年以来,他还担任低温工程会议董事会成员,并担任 2013 年低温工程会议的项目主席