密码学术语:密码学用于加密的许多方案构成了被称为加密密码分析技术的研究领域,用于解释信息,而不必任何有关附加细节的知识落入了密码分析领域。密码分析是外行人所说的“打破代码”。密码学,加密和密码分析的区域共同称为密码学纯文本,这是原始的可理解信息或数据作为输入中的算法。密码文本这是作为输出产生的炒消息。这取决于明文和秘密键。对于给定消息,两个不同的键将产生两个不同的密码文本。密码文本是一个显然是随机的数据流,而且如下所示,是难以理解的。秘密密钥秘密键也输入了加密算法。密钥是独立于明文和算法的值。该算法将根据当时使用的特定键产生不同的输出。该算法执行的确切替代和转换取决于密钥。加密从明文转换为Cipher文本解密的过程恢复来自密封算法的密码文本恢复明文的过程。加密算法对更替代算法进行了各种替换和转换,这本质上是conviemption Algorithm in Gengryptight Algorithm in excryption Algorithm Run。它采用密码文本和秘密键,并产生原始的明文。
b. JCEOI 提供一定程度的通信安全 (COMSEC) 保护,方法是每日、每周、每月或每季度更改呼号、呼号和频率。实施这些建议的更改将增加对手通过监视未加密的指挥、控制和通信链路获取友军信息基本要素的难度。强烈建议对所有战术通信使用密码学。除以下情况外,所有 CCMD 和美国联合指挥部的各单位都被指示每周、每月或每季度使用更改的呼号、呼号和频率进行应急行动、训练和演习。
,写作)是秘密写作(或隐藏信息)的实践和研究。在现代时代之前,密码学仅关注消息机密性(即加密) - 将信息从可理解的形式转换为难以理解的形式,然后在另一端重新返回,这使Interpectors或Eavesdroppers无法读取,而无需秘密的知识(即解密该消息的关键所需的关键))。历史上充斥着人们试图将信息保密的示例。国王和将军使用基本的加密方法与他们的部队进行了交流,以防止敌人学习敏感的军事信息。实际上,据报道,朱利叶斯·凯撒(Julius Caesar)使用了一个简单的密码,该密码以他的名字命名。随着社会的发展,对保护数据的更复杂方法的需求已增加。随着单词变得更加连接,信息和电子服务的需求正在增长,随着需求的增加,对电子系统的依赖性增加。已经通过Internet交换了敏感信息,例如信用卡号,这是普遍的做法。保护数据和电子系统对我们的生活方式至关重要。近几十年来,该领域超越了保密性问题,以包括消息完整性检查,发送者/接收器身份身份验证,数字签名,交互式证明和安全计算等技术。现代密码学与数学,计算机科学和工程学的学科相交。有必要进行不同的加密,加密分析和密码学。密码学是涉及加密和解密系统设计旨在确保信息的机密性,完整性和真实性的密码学的一个分支。加密分析,涉及击败密码系统以恢复原始信息的加密分支。密码学是对确保信息的保密和/或真实性的技术的研究。
cmpe323信号和系统CMPE418 VLSI测试CMPE422数字信号处理CMPE447模拟集成电路设计CMPE449硬件安全性和信任CMPE471电气和计算机工程的实验技术CMPE491 CMPE491的任何运行均包含“安全性”。CMSC442信息和编码理论CMSC443 Cryptology CMSC447软件工程I CMSC449恶意软件分析CMSC455数值计算CMSC487网络安全介绍CMSC491任何在其标题中包括“安全性”一词的产品。上面规定的清单A,B和C的这些修订的配置已于2022年3月获得UGPC批准,并于2022年9月1日获得本科理事会的批准,并于2022年9月15日得到参议院的批准。列表A,B和C在2024年11月6日由Laberge博士确认的本科目录
第二次世界大战密码学的揭露始于 1974 年 FW Winterbotham 的《超级秘密》的出版,随后大量解密原始文件,这引发了对战时事件的重新评估。大多数战时决策、行动和事件,即使是那些长期被认为已经解决的,也必须重新考虑。《超级秘密》的揭露还引发了基于过去二十年解密的大量原始文件的书籍、专著和文章的小型产业。这些书籍中的许多都集中在通信情报报告的信息内容上,将新发布的 COMINT 与特定指挥官、行动或剧院联系起来。
iMessage PQ3 协议是一种端到端加密消息传递协议,旨在在两个设备之间的长期会话中交换数据。它旨在为前向保密和后泄露保密以及经典身份验证提供经典和后量子机密性。其初始认证密钥交换由数字签名加上椭圆曲线 Diffie-Hellman 和后量子密钥交换构成;为了持续派生每条消息的密钥,它采用了 Signal 双棘轮的改编,其中包括后量子密钥封装机制。本文介绍了 PQ3 协议的加密细节,并通过改编 Cohn-Gordon 等人对 Signal 的多阶段密钥交换安全性分析给出了还原论安全性分析。(J. Cryptology,2020)。分析表明,PQ3 在协议的初始密钥交换以及持续密钥更新阶段均提供了具有前向保密性的机密性和针对传统和量子对手的后泄露安全性。
以下内容将熟悉对Estrem项目下开发的许多流媒体加密算法的分析。 div>Estream是一组流媒体加密算法,它是Cryptology II项目欧洲卓越网络的一部分[4]。 div>两种类型的:与软件和设备兼容的压缩加密算法。 div>第一组算法由编程算法中的方便算法组成,由128位AES-CTR算法的快速算法组成。 div>属于此组的决赛选手包括决赛选手:Sals20 / 12,Rabbitis,HC-128和Soseanuk算法。 div>第二组属于第二组的密码组成的密码是兼容的算法,这是将设备实现到设备而不是80位罚款算法所必需的。 div>该组中的FinalChe算法,包括谷物,Trivium [8]和Mickey 2.0。 div>该组中的FinalChe算法,包括谷物,Trivium [8]和Mickey 2.0。 div>
[AAR] Scott Aaronson。量子信息科学简介注释。url:https://www.scottaaronson.com/qclec.pdf(cit。p。 2)。[BB13] Rachid El Bansarkhani和Johannes Buchmann。“基于晶格的签名方案的改进和有效的影响”。in:Cryptog -raphy的选定地区 - SAC 2013 - 第20届国际会议,加拿大卑诗省BUNBAN,2013年8月14日至16日,修订了选定的论文。ed。Tanja Lange,Kristin E. Lauter和Petr Lisonek。 卷。 8282。 计算机科学中的注释。 Springer,2013年,pp。 48–67。 doi:10.1007/978-3-662-43414-7 \ _3。 url:https://doi.org/10.1007/978-3-662-43414-7%5C_3(cit。 p。 6)。 [BG14] Shi Bai和Steven D. Galbraith。 “基于学习错误的签名改进的压缩技术”。 in:Cryptology -CT -RSA 2014年的主题 - 2014年RSA会议上的加密摄影师曲目,美国加利福尼亚州旧金山,2014年2月25日至28日,美国加利福尼亚州。。 程序。 ed。 Josh Benaloh。 卷。 8366。 计算机科学中的注释。 Springer,2014年,pp。 28–47。 doi:10.1007/978- 3- 319-04852-9 \ _2。 URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。> p。 6)。 [bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。 “混合密钥封装机制和身份验证的钥匙交换”。 :量词后密码学的国际会议。Tanja Lange,Kristin E. Lauter和Petr Lisonek。卷。8282。计算机科学中的注释。Springer,2013年,pp。48–67。doi:10.1007/978-3-662-43414-7 \ _3。url:https://doi.org/10.1007/978-3-662-43414-7%5C_3(cit。p。 6)。[BG14] Shi Bai和Steven D. Galbraith。“基于学习错误的签名改进的压缩技术”。in:Cryptology -CT -RSA 2014年的主题 - 2014年RSA会议上的加密摄影师曲目,美国加利福尼亚州旧金山,2014年2月25日至28日,美国加利福尼亚州。程序。ed。Josh Benaloh。 卷。 8366。 计算机科学中的注释。 Springer,2014年,pp。 28–47。 doi:10.1007/978- 3- 319-04852-9 \ _2。 URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。> p。 6)。 [bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。 “混合密钥封装机制和身份验证的钥匙交换”。 :量词后密码学的国际会议。Josh Benaloh。卷。8366。计算机科学中的注释。Springer,2014年,pp。28–47。 doi:10.1007/978- 3- 319-04852-9 \ _2。 URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。> p。 6)。 [bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。 “混合密钥封装机制和身份验证的钥匙交换”。 :量词后密码学的国际会议。28–47。doi:10.1007/978- 3- 319-04852-9 \ _2。URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。p。 6)。[bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。“混合密钥封装机制和身份验证的钥匙交换”。:量词后密码学的国际会议。url:p。 2)。Joppe W. Bos,Leo Ducas,Eike Kiltz,TranèdeLepoint,Lyubashevsky Badadim,John M. Schvanck,Peter Schwabe,Gregory Seiler和DamienStehlé。“晶体-Kyber。in。 2018 IEE欧洲研讨会和隐私,欧元和P 2018,英国伦敦,2018年4月24日至26日。IEEE,2018年,pp。 353–367。 doi:10.1109/eurosp.2 url:https://也是如此。 org/1109/eUROSP.2 p。 7)。 Cong Chen,Oussama Danba,William,Will Schwabe,John Schwabe,William Whyte,Zhenfei Zhang,Tsunekazu Saito,Takashi Yamakawa和Keita Xagawa。 ntru - 提交NIST Quantum项目。 https://ntru.org/f/ntru-2019030.pdf 2019(cit。 p。 7)。 [DN12] Leo Ducases和Phong Q. Nguyen。 in:加密技术的进展 - Asiacrypt 2012 处理。 ed。 Xiaoyun Wang和Kazue Sako。 卷。 7658。 阅读计算机科学笔记。 Springer,2012年,pp。 415–432。 doi:10.1007/978-34-642-34961-4 \ _2 url://doi.org/10.1007/978-3- 642-34961-4%5C_26(cid。 p。 7)。 处理。 ed。IEEE,2018年,pp。353–367。doi:10.1109/eurosp.2url:https://也是如此。org/1109/eUROSP.2p。 7)。Cong Chen,Oussama Danba,William,Will Schwabe,John Schwabe,William Whyte,Zhenfei Zhang,Tsunekazu Saito,Takashi Yamakawa和Keita Xagawa。ntru - 提交NIST Quantum项目。https://ntru.org/f/ntru-2019030.pdf 2019(cit。 p。 7)。 [DN12] Leo Ducases和Phong Q. Nguyen。 in:加密技术的进展 - Asiacrypt 2012 处理。 ed。 Xiaoyun Wang和Kazue Sako。 卷。 7658。 阅读计算机科学笔记。 Springer,2012年,pp。 415–432。 doi:10.1007/978-34-642-34961-4 \ _2 url://doi.org/10.1007/978-3- 642-34961-4%5C_26(cid。 p。 7)。 处理。 ed。https://ntru.org/f/ntru-2019030.pdf2019(cit。p。 7)。[DN12] Leo Ducases和Phong Q. Nguyen。in:加密技术的进展 - Asiacrypt 2012处理。ed。Xiaoyun Wang和Kazue Sako。卷。7658。阅读计算机科学笔记。Springer,2012年,pp。415–432。doi:10.1007/978-34-642-34961-4 \ _2url://doi.org/10.1007/978-3- 642-34961-4%5C_26(cid。p。 7)。处理。ed。[GLP12]TimGüneysu,Vadim Lyubashevsky和ThomasPöppelmann。“基于晶格的密码学:嵌入式系统的签名方案”。in:加密硬件和嵌入式系统 - CHES 2012-11届国际研讨会,比利时,比利时,2012年9月9日至12日。由伊曼纽尔·普鲁(Emmanuel Prou)和帕特里克·舒蒙特(Patrick Schaumont)作者。卷。7428。计算机科学中的注释。Springer,2012年,pp。530–547。DOI:10.1007/978-3-642-33027-8 \ _31。url:https://doi.org/10.1007/978-3-642-33027-8%5C_31(cit。p。 7)。[GNR10] Nicolas Gama,Phong Q. Nguyen和Oded Regev。“使用treme修剪的晶格枚举”。in:密码学的进展 - 2010年Eurocrypt。ed。henri Gilbert。柏林,海德堡:斯普林格柏林海德堡,2010年,pp。257–278(cit。p。 4)。[HHK17] Dennis Hofheinz,KathrinHövelmanns和Eike Kiltz。“对富士基 - 奥卡本转换的模块化分析”。在:密码学理论 - 第15届国际会议,TCC 2017,美国马里兰州巴尔的摩,2017年11月12日至15日,会议记录,第一部分。ed。Yael Kalai和Leonid Reyzin。 卷。 10677。 计算机科学中的注释。 Springer,2017年,pp。 341–371。 doi:10.1007/978-3-319-70500-2 \ _12。 URL:https://doi.org/10.1007/978-3-319-70500-2%5C_12(cit。> p。 6)。Yael Kalai和Leonid Reyzin。卷。10677。计算机科学中的注释。Springer,2017年,pp。341–371。doi:10.1007/978-3-319-70500-2 \ _12。URL:https://doi.org/10.1007/978-3-319-70500-2%5C_12(cit。> p。 6)。URL:https://doi.org/10.1007/978-3-319-70500-2%5C_12(cit。p。 6)。
CMPE323 信号与系统 CMPE418 VLSI 测试 CMPE422 数字信号处理 CMPE447 模拟集成电路设计 CMPE449 硬件安全与信任 CMPE471 电子与计算机工程实验技术 CMPE491 标题中包含“安全”一词的任何课程。 CMSC442 信息与编码理论 CMSC443 密码学 CMSC447 软件工程 I CMSC449 恶意软件分析 CMSC455 数值计算 CMSC487 网络安全简介 CMSC491 标题中包含“安全”一词的任何课程。上述 A、B 和 C 列表的修订配置已于 2022 年 3 月获得 UGPC 批准,于 2022 年 9 月 1 日获得本科生理事会批准,并于 2022 年 9 月 15 日获得教务委员会批准。LaBerge 博士于 2024 年 11 月 6 日确认了 A、B 和 C 列表与本科生目录一致
