摘要:由于传感器材料和光学波导等实用应用,有机发光的固体材料引起了很多关注。我们以前已经报道过,逆类型日志甲观在晶体中表现出强大的发射,而不会引起聚集引起的淬火。但是,排放颜色仅限于绿色。为了调整发射颜色,在这项工作中,我们新合成具有缩短的π-共轭长度或极性取代基的逆类型日志甲乙烯,并研究了其在溶液和晶体中的荧光性能。晶体根据分子结构表现出各种发射颜色,从蓝色,绿色,黄色到红色。除了缩短的π连接长度和分子内电荷转移特征外,还通过分子间相互作用(例如CH-π相互作用)诱导了晶体的发射颜色变化。
摘要:底物表面的状态是某些有机化合物的升华方法产生的晶体形态的关键因素之一。在这项工作中,我们成功地准备了1,2-双(2,5-二甲基-3-噻吩基)全氟细胞烯(1A)的不同形态,这些晶体被分类为空心晶体和叶片样晶体,通过与玻璃表面相处,并与玻璃表面进行玻璃表面,并与水文表面相处。为了澄清玻璃基板每个表面上的晶体生长过程,我们研究了在升华的早期阶段附着在底物表面的米勒指数,并通过X射线衍射测量和极化显微镜散发器的晶体面晶体的晶状体生长方向和晶体生长方向。结果表明,在早期和升华阶段产生的晶体面之间的异质结会导致两种不同的晶体形态。此外,已经证实,异质结在这些晶体面之间的特定方向上发生,因为这些晶体面上的晶格点非常吻合。最后,我们展示了空心和羽毛状晶体的光学行为。
用于 Li–S 电池的富氧空位多壁碳纳米管上N、F 和 B Co 掺杂 CoFe 2 O 4âˆ' x的离子液相辅助合成。先进功能材料,2022,32,。
与任何其他简单的液体不同,超冷液体GA是一种复杂的液体,具有共价和金属炭。[2]元素GA形成同素[3-5]及其低熔化温度(29.8°C)的能力使其成为具有高温和电导率的无毒金属材料。[6]在1952年,F.C。坦率地假设,在由大致球形对称性的原子组成的超冷液体中,二十面体短距离阶在能量上有利。[7,8]对于Dectes,超冷液体GA中的异常结构有序在科学社区中引起了极大的关注。在以前的尝试中描述了液体GA,TSAY和WANG [9]的异常特性时,在GA的四面体上报道了由两个二聚体相互互锁的四二二聚体 - 具有四个带有四个原子的指数。与其他邻居相比,最近的邻居原子之一的键长具有更长的键长,因此四面体是不对称的。在短寿命的共价GA二聚体的情况下,键长的长度接近2.44Å是归因于从摩尔圆形动力学模拟中观察到的结构肩部。[2]但是,在群集结构中的GA – GA对分离大于2.5Å,更有可能
人工智能驱动的模拟器的兴起:构建新的水晶球 计算社区联盟 (CCC) 四年期论文 Ian Foster(芝加哥大学)、David Parkes(哈佛大学)和 Stephan Zheng(Salesforce AI Research) 五十年前,天气预报员努力预测明天的天气是否与今天相同。如今,天气预报通常可以准确预测未来一周或更长时间,让个人和社会能够为不再不可预见的事情做好准备。这种显著的转变在很大程度上归功于计算机,尤其是计算模拟的兴起,这是一种使用计算机预测复杂系统未来状态的方法。模拟最初是在第二次世界大战的最后几天为军事目的而开发的,现在已遍布人类社会和经济领域,为决策者提供了一个非凡的水晶球,不仅可以预测下周的天气,还可以预测飞机在不同天气模式下飞行时的表现、新药对新疾病的有效性以及未来电池中新材料的行为。计算机模拟是在计算机上执行的数学建模过程,旨在预测现实世界或物理系统的行为或结果。 1 模拟通常通过将空间(例如北美)划分为多个小单元来配置,每个小单元保存一组值(例如温度和压力)以及一组本地规则,用于更新下一个时间步骤的单元(例如,基于单元和相邻单元的当前温度和压力,一分钟后的温度/压力)。模拟运行以测量的输入(温度/压力)为种子,并反复应用其规则来随时间更新模拟系统。更准确的输入数据、更小的单元和更好的规则可以实现更高保真度的模拟(例如,下周而不是明天的良好天气预报)。计算机模拟的使用现在在社会上如此普遍,毫不夸张地说,美国和国际的持续繁荣、安全和健康在一定程度上取决于模拟能力的持续改进。如果我们能够预测两周后的天气,指导新病毒性疾病新药的设计,或者管理将生产成本和时间降低一个数量级的新制造工艺,情况会怎样?如果我们能够预测人类的集体行为,例如,在自然灾害期间对疏散请求的响应,或劳动力对财政刺激的反应,情况会怎样? (另请参阅 CCC Quad 关于疫情信息学的配套论文,其中讨论了
摘要:我们在液态氦气温度(T = 2 K)上进行激光光谱,以研究用氢化动力学滴注制造的纳米镜高度的蒽晶体中的掺杂的单二苯甲烷(DBT)分子。使用高分辨率的荧光激发光谱法,我们表明,印刷纳米晶体中单分子的零子线几乎与对散装中同一来宾 - 宿主系统观察到的傅立叶限制过渡一样狭窄。此外,光谱不稳定性可与或小于一个线宽度相当。通过记录DBT分子的超分辨率图像并改变激发梁的极化,我们确定印刷晶体的尺寸和晶体轴的方向。对于一系列应用,有机纳米和微晶的电水动力印刷是感兴趣的,其中希望对具有狭窄光学转变的量子发射器进行对照定位。关键字:纳米折线,纳米晶,量子发射极,单分子,单光子源,光谱M
具有高效率的操作和清洁能量过渡。[2]与化学成分一起,分子间相互作用直接通过将分子堆积管理到晶体中来确定有机固体的功能。与单个分子[3a,b]相比,这种能量的增加导致晶体的电子结构发生变化,这打开了调整所得有机晶体(OC)的光学,电子和传输特性的可能性。然而,这种强大的间隔相互作用可确保OC的结构元素之间有效的电荷转移,进而可以通过淬火过程降低光发射性能。[3F-K]相反,通过引入氢键[3C-E]来降低该能量的降低,可保留单个分子及其光发射特性的电子特征,并扩大了分子堆积的方式,并提供了OC生长在任意表面上的控制。反过来,这些对于轻松产生有效的连贯和不连贯的光源至关重要。[1C]