- “垃圾费”。我们应该期望继续关注与收到服务和产品有关的消费者支付的费用和款项。,尽管FTC最近在“垃圾费”上进行的规则制定努力最终仅限于现场活动和短期租赁行业,但FTC将重点关注其他行业的问题,包括金融服务行业(包括辅助学生贷款产品和诸如辅助学生贷款产品和服务),自动和自动企业以及自动企业和其他工业。- “欺骗性的营销实践和骗局”。FTC将继续从事执法活动,以阻止“骗局”,或者FTC认为是骗局或不公平的商业活动。- 其他区域。消费者隐私和类似的数据保护计划,该计划将在演示文稿后面详细介绍。•倡导团体和贸易协会的影响
业务运营旨在通过专注于数字化和自动化来提高效率和生产力,同时满足特定的运营目标。新兴技术趋势使组织能够灵活地管理其资源和工作负载,同时实现可扩展性。主要目标是通过在运营实践中有效采用和使用这些趋势来充分利用这些趋势的潜力。
Lubrizol Advanced Materials, Inc.(“Lubrizol”)希望您对此建议的配方感兴趣,但请注意,这只是一种代表性配方,并非商业化产品。在适用法律允许的最大范围内,Lubrizol 不作任何陈述、保证或担保(无论是明示、暗示、法定或其他形式),包括任何关于适销性或特定用途适用性的暗示担保,或关于任何信息的完整性、准确性或及时性的暗示担保。Lubrizol 认为此配方所基于的信息和数据是可靠的,但配方尚未经过性能、功效或安全性测试。在商业化之前,您应彻底测试该配方或其任何变体,包括配方的包装方式,以确定其性能、功效和安全性。您有责任获得任何必要的政府批准、许可或注册。本文中包含的任何内容均不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱导。与此配方相关的任何索赔可能并非在所有司法管辖区都获得批准。安全处理信息不包括安全使用所需的产品安全信息。操作前,请阅读所有产品和安全数据表以及容器标签,了解安全使用和物理及健康危害信息。您可从路博润代表或经销商处获取此配方路博润产品的安全数据表。
小型量子处理器有助于使量子网络变得实用且对错误具有鲁棒性。例如,在基于测量的量子中继器中,多量子比特处理器可以净化纠缠[1-3],消除光子传输过程中由退相干引起的误差。小型处理器可用于生成某些容错通信方案 [5] 或盲量子计算 [6] 所需的簇状态 [4]。如果处理器之间能产生足够强的耦合,那么可扩展的分布式量子计算 [7,8] 将成为可能。适合制造小型量子处理器的物理系统与全尺寸量子计算的物理系统可能非常不同,全尺寸量子计算的主要关注点是扩展到大量量子比特。小型处理器可以优先考虑高量子比特互连性和强量子比特相互作用。这些特性表明系统内的量子比特彼此靠近,例如固体中的自旋簇。这些自旋团簇需要强光耦合,因为上述大多数小型处理器应用都是光学接口。此外,工作波长和带宽应与其他网络元件和光通道相匹配。这种光寻址自旋团簇系统的一个著名例子是金刚石中的氮空位 (NV) 中心与附近一组随机的 13 C 核自旋耦合 [9-11]。在本文中,我们提出了一种用于生成小型量子处理器的自旋团簇系统:稀土晶体中掺杂剂周围的稀土宿主离子(见图 1)。在这样的系统中可以解析数十个量子比特,而短的离子间距离意味着量子比特之间存在强相互作用。稀土离子具有光学可访问的超精细自旋态,具有较长的光学和自旋相干性
虽然PXRD是获得有关材料的固态结构的最简单,最快的方法,但单晶X射线差异(SC-XRD)仍然是有关分子构成和周期性排列的综合数据的金标准。从粉末数据(SDPD)中确定结构也是晶体结构确定的一种活跃而实践的方法。然而,高质量的粉末X射线差异数据和对专家晶体学家的访问可能是要求,而使用的方法比SC-XRD涉及更多的时间,约束和试验和错误,然后才能获得分子有机晶体的成功。2 - 4统计评估是否可以通过Rietveld
下载高分辨率图像柏林,2024 年 6 月 13 日——总部位于柏林的电池公司 theion 在德国最大的科技集群之一阿德勒斯霍夫科技园区开设了新的技术中心,其改变游戏规则的晶体电池正在此开发。 theion 的电池创新基于硫——一种无需有害和密集开采(在工业过程中作为副产品获得)且储量丰富的材料——是一种高效替代品,可替代阴极材料,后者加工成本高,且含有镍和钴的金属。硫不仅比现有的最先进锂离子电池中使用的阴极材料便宜 99%,而且 theion 的创新电池单元的生产所需的能量也显著减少——从原材料到成品电池。 theion 的专利硫晶体电池化学技术旨在将能量密度提高三倍,而电池成本仅为当前电池技术的三分之一,二氧化碳排放量仅为当前电池技术的三分之一。这项突破使轻质、碳中性的可持续电池能够彻底改变电动汽车和固定式储能。新的技术中心实验室包括一个设备齐全的合成实验室、手套箱实验室和循环实验室,使 theion 的专家能够加速他们的革命性工作,以 1 MWh 的半自动电池组装来颠覆电池行业,为客户提供样品。“我们很高兴搬进新的实验室、车间和电池采样区,”theion 首席技术官 Martin Schaupp 表示;“这里的技术条件非常适合我们的专家、聪明的思考者和快速的执行者团队,他们可以在小型、高效的团队基础上开展工作,取得令人难以置信的成果。”theion 董事会成员兼主要投资者 Team Global 首席执行官 Lukasz Gadowski 表示:“作为前沿科技企业的投资者,我见证了数千家初创企业,投资了数百家,并成功创办了数十家
电载体及其高热分率[8]和机械功能使石墨烯高度用途。结合钻石和石墨烯的显着性在于具有最好的两者的可能性:钻石的绝缘和热散热性能以及墨料的出色电气特性。钻石表现出165 MeV的高光音子能量。[9]此属性对于钻石上的石墨烯设备可能至关重要,因为石墨烯层中的载流子迁移率通常受到源自底物的光学声子散射的限制。高光学声子能量意味着在RT处很少有光学声子,导致低散射速率。与常规的SIO 2 /Si和SIC相比,DIAMOND作为底物的其他好处包括其具有较低陷阱密度的化学惰性表面。作为钻石上石墨烯设备的底物,由于其可伸缩性可能性和较低的缺陷密度,化学蒸气沉积(CVD)钻石优于高压高温(HPHT)。[10]石墨烯和钻石的非凡特性引起了人们对将这些材料集成到电子和量子应用中的兴趣。[11]
摘要:底物表面的状态是某些有机化合物的升华方法产生的晶体形态的关键因素之一。在这项工作中,我们成功地准备了1,2-双(2,5-二甲基-3-噻吩基)全氟细胞烯(1A)的不同形态,这些晶体被分类为空心晶体和叶片样晶体,通过与玻璃表面相处,并与玻璃表面进行玻璃表面,并与水文表面相处。为了澄清玻璃基板每个表面上的晶体生长过程,我们研究了在升华的早期阶段附着在底物表面的米勒指数,并通过X射线衍射测量和极化显微镜散发器的晶体面晶体的晶状体生长方向和晶体生长方向。结果表明,在早期和升华阶段产生的晶体面之间的异质结会导致两种不同的晶体形态。此外,已经证实,异质结在这些晶体面之间的特定方向上发生,因为这些晶体面上的晶格点非常吻合。最后,我们展示了空心和羽毛状晶体的光学行为。
摘要:液晶 (LC) 微液滴阵列是一种精巧的系统,由于其对表面性质变化的敏感性和强光学活性,具有广泛的应用,例如化学和生物传感。在这项工作中,我们利用自组装单层 (SAM) 对表面进行化学微图案化,并优先选择液晶占据的区域。利用不连续脱湿,将一滴液体拖到图案化表面上,展示了一种新颖、高产的方法,可将液晶限制在化学定义的区域中。通过改变液滴的大小和液晶相,证明了该方法的广泛适用性。虽然液滴的光学纹理由拓扑约束决定,但额外的 SAM 界面显示出锁定非均匀排列。表面效应高度依赖于尺寸,其中较大的液滴在向列相液滴中表现出不对称的指向矢结构,而在胆甾相液滴中表现出高度打结的结构。
日本制钢所和三菱化学株式会社正在 NEDO 的“节能技术战略创新计划”下,致力于电力电子用大直径块状氮化镓 (GaN) 基板的示范和开发。该示范和开发在 2021 年 5 月建立的世界上最大的 GaN 基板制造示范设施(大型示范设施)中进行。我们使用“SCAAT TM -LP”进行了 4 英寸 GaN 基板量产晶体生长实验,这是一种低成本的高质量 GaN 基板制造技术。实验结果,我们已确认 4 英寸 GaN 晶体正在按计划生长。与中试设施相比,大型示范设施的规模显著扩大,可以制造大量的 GaN 基板。未来,我们将在大型示范设施中进一步进行示范实验,旨在通过稳定供应高质量的GaN基板,为超高效器件的开发做出贡献,并于2022财年初开始向市场供应。