或CsCl 40已用于处理CsPbI 3 层以原位生长二维钙钛矿层作为电子阻挡层。 但单个电子阻挡层的性能提升仍然有限,需要新的策略。 在此,CsPbCl 3 QDs和二维Cs 2 PbI 2 Cl 2都沉积在CsPbI 3 钙钛矿层上以形成复合电子阻挡层。 首先,使用CsPbCl 3 QDs环己烷溶液将CsPbCl 3 QDs旋涂在CsPbI 3 钙钛矿层上。 然后,将CsCl乙醇溶液也旋涂在涂有QDs的CsPbI 3 钙钛矿层上以形成二维Cs 2 PbI 2 Cl 2。 这种结构形成了有利于电子阻挡的能级排列。此外晶体缺陷也得到有效钝化,CsPbI 3 C-PSCs的PCE由12.51%提升至16.10%。
摘要:灯笼是由于它们在可见光和近红外范围内狭窄的光学发射光谱而导致光电特性的多功能调节剂。它们在金属卤化物钙钛矿(MHP)中的使用最近已获得突出,尽管它们在这些材料中的命运尚未在原子水平上建立。我们使用Cesium-133固态NMR来建立所有非放射活性灯笼离子的物种(La 3+,Ce 3+,Pr 3+,Nd 3+,SM 3+,SM 3+,SM 3+,SM 2+,EU 3+,EU 3+,EU 2+,GD 3+,GD 3+,GD 3+,GD 3+,TB 3+,TB 3+,HO 3+,HO 3+,HO 3+,HO 3+,HO 3+,MIR 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ lu 3+ lu 3+ lu 3+ lu 3+ lu 3+ CSPBCL 3。我们的结果表明,无论其氧化状态如何(+2,+3),所有灯笼均掺入CSPBCL 3的钙钛矿结构中。■引言铅卤化物钙钛矿已引起了光电应用的半导体材料的极大关注。1
摘要。串联结构已引入光伏(PV)市场,以提高功率转换效率(PCE)。以同义或异缝格式的单连接细胞的PCE被剪辑至与吸收材料带隙相关的理论极限。将单连接细胞扩展到多结构结构可穿透这些限制。有希望的串联结构之一是硅拓扑上的钙钛矿。si连接在应用带隙工程方面的情况下用作上面的钙棍夹层的反裸单元。在此,我们采用BATIO 3 /CSPBCL 3 /MAPBBR 3 /CH 3 NH 3 PBI 3 /C-SI串联结构进行研究。在串联PV中,可以调整各种输入参数以最大化PCE,从而大大增加输入组合。如此庞大的数据集直接反映了模拟广泛组合和计算时间所需的计算要求。在这项研究中,我们使用3×10 6分的数据集播种了我们的随机机器学习模型,并在SCAP中使用光电子数值模型播种。机器学习可以估计所提出的串联结构的最大PCE极限约为37.8%,这是裸露的SI细胞报告的两倍以上。