实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态分类神经尖峰,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改进。
实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态分类神经尖峰,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改进。
太阳能收集器和工作流体之间的对流和导电热传递使光热性能有限,并导致从传统吸收剂表面到周围环境的热量损失较高。直接吸收太阳能收集器(DASC)是改进光热性能的有利替代方法。在这项研究中,使用TRNSYS进行了基于纳米结构太阳能收集器的性能的模拟。在这项研究中,通过使用纳米流体和三种不同的纳米结构材料CUO,GO和ZnO,可以改善来自直接太阳能收集器的结缔组织和导电热传递。分析确定了通过直接太阳能收集器的工作流体的出口温度。TRNSYS模型由拉合尔市的直接太阳能收集器和天气模型组成,整整一年进行了1,440小时。使用UV-VIS分光光度计研究了水中这些纳米结构材料的稳定性。确定了直接太阳能收集器的各种性能参数,例如出口收集器温度和传热速率的变化。通过实验结果验证了数值模型。对于基于GO的纳米流体,观察到63°C的最高出口温度。模拟结果表明,全年,纳米流体改善了直接太阳能收集器的性能。与水相比,基于CUO,ZnO的纳米结构的纳米液体观察到23.52、21.11和15.09%的传热率的显着提高,与水相比分别进行。这些纳米结构材料在太阳能驱动的应用中是有益的,例如太阳能脱盐,太阳能水和空间加热。
27。Schroder,S。; Ababii,n。;卢潘(O。); Drewes,J。; Magariu,n。 Krüger,H。; Strunskus,t。;阿德伦(R. Adelung);汉森(S。); Faupel,F。Cuo/Cu2O/ZnO的感应性能:Fe异质结构涂有用于电池应用的热稳定的超薄疏水PV3D3聚合物层。mater。今天的化学。 2022,23,编号 100642。 (27)Wang,Z。;朱,L。 Liu,J。; Wang,J。; Yan,W。电池热失控的检测和预警的燃气感应技术:评论。 能量燃料2022,36,6038-6057。今天的化学。2022,23,编号100642。(27)Wang,Z。;朱,L。 Liu,J。; Wang,J。; Yan,W。电池热失控的检测和预警的燃气感应技术:评论。能量燃料2022,36,6038-6057。
对具有滑移效应的不规则尺寸薄片上的 3D MHD 非线性辐射混合纳米流体流动进行了数值研究。混合纳米流体由嵌入甲醇或甲醇 (MA) 中的氧化铜 (CuO) 和氧化镁 (MgO) 纳米颗粒组成。使用相似性将控制 PDE 改为 ODE,并使用射击方案获得数值解。通过图表和数值解释分析和反映了物质因素对传输现象的作用。同时给出了 CuO-MA 纳米流体和 CuO-MgO/MA 混合纳米流体的解。结果确定混合纳米流体和纳米流体的温度和流动边界层厚度并不是唯一的。与 CuO-MgO/MA 混合纳米流体相比,CuO-MA 纳米流体的传热作用较高。这得出结论,CuO-MgO 组合是一种良好的绝缘体。
摘要 — 太阳能和风能等可再生能源的间歇性需要与储能装置集成才能实现实际应用。在本研究中,通过实验研究了在存储、充电和放电 (SCD) 条件下与水加热系统集成的翅片圆柱形热能存储 (C-TES) 的热性能增强情况。从理论和实验上详细研究了在 PCM 中添加氧化铜 (CuO) 和氧化铝 (Al 2 O 3 ) 纳米颗粒对热导率、比热以及充电和放电性能速率的影响。实验装置利用石蜡作为 PCM,将其填充在翅片式 C-TES 中进行实验。实验结果表明,与非纳米添加剂 PCM 相比,有积极的改善。该项目的意义和独创性在于评估和识别具有更高改善热性能潜力的优选金属氧化物。
在这项研究中,使用溶液燃烧方法在500°C的温度下成功合成了0.95zno-0.5cuO纳米复合材料6小时。使用X射线衍射(XRD)和紫外可见(UV-VIS)光谱分析材料的结构和光学特性。使用针对大肠杆菌(大肠杆菌)的琼脂井扩散法测试了抗菌特性。XRD分析显示尖锐的Bragg峰,表明纳米复合材料的高结晶度。该材料表现出六边形(ZnO)和单斜晶(CUO)相的混合物。计算的结晶石尺寸为20.18 nm,确认了复合材料的纳米级结构。UV-VIS光谱学在紫外线下显示出光学活性,测得的光条间隙为3.11 eV。抗菌测试显示出令人鼓舞的结果,复合材料在15.6 mg/ml浓度的抑制区直径为15.12 mm,针对大肠杆菌。
电转甲烷代表了将电能转化为化学能的一种创新方法。这种技术只有在将经济高效的电能来源与纯 CO 2 流相结合时才能真正成功。从这个角度来看,本文通过数值研究了一种创新工艺布局,该布局集成了用于燃烧固体燃料的流化床化学循环系统和基于可再生能源的电转甲烷系统。通过考虑一种煤和三种含水量不同的污水污泥作为燃料、以氧化锆为载体的 CuO 作为氧载体、通过水电解生产氢气以及以氧化铝为载体的 Ni 作为甲烷化催化剂来评估工艺性能。通过考虑部分产生的 CH 4 最终可以燃烧以干燥高水分含量的燃料来评估该工艺的自热可行性。最后,通过考虑仅使用来自可再生能源的电能,评估了所提出的工艺用作储能系统的能力。关键词:火力发电厂、化学循环燃烧、
摘要。EU 2-X CE X CUO 4(ECCO)是基于丘脑的掺杂电子的超导体之一。ECCO材料在研究和研究中很有趣,因为欧盟是形成ECCO材料的主要材料,在基本状态下没有磁矩,因此它使研究ECCO超导体的整体磁性特性变得更加容易。本研究的目的是研究具有CE(X)浓度的ECCO材料的结构和磁性= 0.20; 0.21; 0.22; 0.23; 0.24和0.25。所有ECCO材料的特征是使用X射线衍射(XRD)来确定晶体和晶格参数的结构,并通过使用超导量量子干扰装置(Squid)来确定材料的磁性特性。XRD表征的结果表明,晶相与电子掺杂的超导相一致,其中形成的结构是T',这是由D HKL(013)和(110)上典型峰出现的标记。对于鱿鱼结果,在某些氧气还原值的范围内观察到ce(x)= 0.20-0.25的ECCO材料中的顺磁性的性质。
发现具有最小毒性或对正常细胞副作用的新型生物相容性和可生物降解的聚合物制剂是微生物感染和癌症治疗的主要并发症。已经发现了用于聚(氧化乙烷)(PEO)或聚(乙二醇)(PEG)聚合物的各种化学,生物和药物功能。增强抗菌和抗癌活性,结合了金属或金属氧化物纳米颗粒(NP),例如银(Ag),氧化铜(CUO)和氧化锌(ZnO)NPS,在该半晶体和线性聚合物中可能是有效策略。更重要的是,PEO可以形成可以直接应用于身体部位的水凝胶,例如皮肤或粘膜进行局部治疗。PEO通过PEO增加口服吸收和抗癌活性来装饰抗癌药物的纳米载体。PEO聚合物对抗病毒药物作为有效递送系统的各种微型和纳米形式的各种微观成分表现出令人鼓舞的结果。根据最近的进展,讨论了这一微型综述,抗菌,抗病毒和抗肿瘤作为PEO及其衍生物的三种主要治疗应用。