拥抱的感觉和情绪 - 当没人愿意拥抱猴子时,猴子会有什么感觉?谁给了我们最好的拥抱?我们什么时候会觉得需要拥抱?谁是我在托儿所环境中的关键人物?关键问题我们可以拥抱谁?所有的动物最终都学到了什么?虽然我们各不相同,但我们可以照顾我们所有的朋友。孩子们开始了解他们的关键人物。创新阶段 - 与英国的动物建立联系 - 狐狸幼崽在秋天穿过森林散步 - 他看到了谁?使用孩子们将在我们的秋季主题中了解更多的动物 - 松鼠、刺猬、獾、狐狸、猫头鹰和兔子。
摘要:通过固态合成和烧结,基于两个铜硼酸盐和Cu 3 b 2 O 6的新陶瓷材料,并将其表征为低介电介电介电常数的有希望的候选者,用于很高的频率电路。使用加热显微镜,X射线衍射测量法,扫描电子显微镜,能量分散光谱镜检查和Terahertz时间域光谱研究了陶瓷的烧结行为,构成,显微结构和介电特性。研究表明,频率范围为0.14–0.7 THz的介电介电常数为5.1-6.7,介电损失低。由于低烧结温度为900–960℃,基于铜硼酸盐的材料适用于LTCC(低温涂层陶瓷)应用。
地热交换钻孔场 我们计划钻探 2,000 个地热交换钻孔,目前已完成一半以上,以在校园范围内推广地热交换技术的使用。刘易斯艺术中心、湖畔研究生宿舍、劳伦斯公寓、布隆伯格、巴特勒学院、新学院西校区和叶学院目前均已在使用这项技术。 TIGER 和 CUB 这些新建筑将容纳扩展地热交换供暖和制冷系统所需的热泵和电气设备。TIGER(热集成地热交换资源)和 CUB 不是后台服务建筑,而是将融入校园,支持普林斯顿对可持续发展的承诺。每栋建筑附近的两个热能储存罐 (TES) 用于储存热水和冷水。 转换为区域热水 我们正在安装超过 13 英里的新地下热水分配管道,将蒸汽热能转换为热水热能。热水所需的管道设计与目前用于蒸汽分配的不同,这两种技术背后的科学原理也不同。最终,新的热水管道和新系统将使每栋校园建筑都能使用地热交换供暖和制冷。改造普林斯顿的冷冻水厂我们已经将以可靠性和能源效率而闻名的 Cogen 电厂从冷冻水厂和热电联产 (CHP) 蒸汽厂改造为采用热水地热交换技术的更名后的西电厂。Cogen 将与 TIGER 一起运营,以高效(经济和热能)满足校园供暖、制冷和部分电力负荷需求。这两家电厂还将互连,以便每个电厂都可以部分地相互备份。改造建筑系统完成校园地热交换的一个重要步骤是改造现有校园建筑的供暖和制冷系统。这些改造将持续多年。完全改造后,大学将使用地热交换系统为 180 多栋建筑供暖和制冷,每年节省数百万美元。
斯科菲尔德兵营阵亡将士纪念日纪念活动向公众开放 夏威夷斯科菲尔德兵营(2023 年 5 月 25 日)——美国陆军将于 5 月 29 日上午 10 点在当地的哨所公墓举行一个小型阵亡将士纪念日纪念仪式,邀请公众一起纪念为国捐躯的陆军退伍军人和姊妹军种成员。 美国陆军驻夏威夷司令史蒂夫·麦克古尼格尔上校将担任仪式发言人。紫心勋章军事组织、海外战争退伍军人协会、美国退伍军人协会和金星家庭的代表也将参加,敬献花圈纪念阵亡战友。仪式开始前,一群士兵和当地童子军(男童、女童和幼童军)将在每个墓碑上放置小美国国旗。
幼童军领导力”(见资源中的链接),并告诉他们:“这份 BSA 出版物提供了成功的步骤,列出了单位领导力的素质,并包括选择领导者的想法。所有这些信息都将在招募领导者的过程中对你有所帮助。”与参与者分享他们可以在哪里找到小队领袖资源:scouting.org/programs/cub-scouts。解释:“一旦招募了领导者,我们如何留住这位领导者?这个过程从入职介绍开始,然后立即进入培训(在 scouting.org 上的学习中心在线进行或与你的委员会联系以进行面对面培训)和支持。这些额外的 BSA 出版物将让新领导者熟悉他们被招募的工作。一些单位可能还有“单位爆米花粒”、“招募夜间协调员”等职位。对于那些
MRO Management:祝贺 AJW 成立 90 周年。是否有某种“理念”或商业原则支撑着公司的发展和长盛不衰? Christopher Whiteside:我想,AJW 现在的运营方式与 90 年前一样灵活和热情,当时一位雄心勃勃的英国人驾船出海,最终飞上蓝天。1932 年,Anthony James Walter(Jim)从英格兰南部出发,参加加利福尼亚和夏威夷之间的帆船比赛。他横跨海陆飞行了六个星期,却发现比赛因天气恶劣而取消。在洛杉矶范奈斯机场附近逗留期间,他决定如果不能参加比赛,就学习飞行。他驾驶 Piper Cub 飞机飞上蓝天,获得资格后,他决定前往宾夕法尼亚州的公司总部。他被邀请到最高层,并被问及他们是否允许他在英国销售他们的飞机。他们回复说,很多人都写信、发信给他
几次学习(FSL)的目的是学习如何从少数培训检查中认可图像类别。一个核心挑战是,可用的培训检查通常不足以确定哪些视觉效果是所考虑类别中最具特征的。为了应对这一挑战,我们将这些视觉特征组织成方面,从直观地将相同的特征分组(例如,与形状,颜色或纹理相关的功能)。这是从以下假设中的动机:(i)每个方面的重要性因类别而异,并且(ii)可以从类别名称的预训练的嵌入中预测Facet的重要性。尤其是我们提出了一种自适应的相似性度量,依靠对给定类别的预测的重要性权重。该措施可以与各种现有的基于度量的甲基甲化组合使用。在迷你胶原和CUB上进行的实验表明,我们的方法改善了基于公制的FSL的最新方法。
CAS活跃位点中存在的单核离子(Zn 2+)与3个组氨酸残基有关,即His94,His96,His119和一个H 2 O/OH - 配体形成四面体连接。具有Zn 2+的金属中心在动力学上不稳定。,而金属(Zn 2+)碳赤霉素的游离形式,即apo ca是稳定的。因此,通过使用DPA(吡啶-2,6-二羧酸),透析,APO CA相对易于生成。Apo Ca具有2个(热力学独特的)Cu 2+(铜)结合位点,一个是Cu a,另一个是CuB。两个站点在Cu 2+的功能中都有不同的差异。然而,结合位点Cu B是较低的官能部位,称为碳酸酐酶的天然金属结合位点。相反,cu a(高官能部位)的配位和位置几何形状尚不清楚。3
感染反应和其他免疫相关基因(ILG)首先在秀丽隐杆线虫中命名 - 基于病原体挑战的表达,但是当脂质代谢受到干扰时,许多人也会上调。为什么病原体攻击和代谢变化两个增加ILGS尚不清楚。我们发现,当秀丽隐杆线虫中分泌细胞器的膜膜的磷脂酰胆碱(PC)水平变化时,ILG被激活。RNAi靶向ADP-核糖基化因子ARF-1(破坏高尔基体和分泌功能)也激活了ILGS。低PC限制ARF-1功能,这表明通过脂质代谢进行ILG激活的机制,这是作用于ER外的膜应激反应的一部分。RNAi在两个GFP替代者的分泌中发现了缺陷,并积累了病原体响应的补体C1R/C1S,UEGF,BMP1(CUB)域融合蛋白。我们的数据认为,某些ILG的上调是对贩运变化的协调反应,并且可能采取行动来抵消对分泌功能的压力。
csmd1(幼崽和寿司多个域1)是补体级联反应的补体级联反应的重要组成部分。csmd1在中枢神经系统(CNS)中高度表达,其中补体途径的紧急功能调节神经发育和突触活动。虽然神经精神疾病的遗传危险因素,但CSMD1在神经发育疾病中的作用尚不清楚。通过国际变体共享,我们确定了来自六个不同血统家族的八个人的遗传性双重CSMD1变体,这些人出现了全球发育迟缓,智力障碍,小头畸形和多毛糖。我们在早期前脑前脑器类器官中对CSMD1功能丧失(LOF)发病进行了建模,该器官与CSMD1基因敲除人类胚胎干细胞(HESC)区分开。我们表明,CSMD1对于神经上皮细胞结构和同步分化是必需的。总而言之,我们确定了CSMD1在大脑发育和双重CSMD1变体中的关键作用,是先前未固定的神经发育障碍的分子基础。