美国国家能源技术实验室直接空气捕获(DAC)中心支持从大气中删除CO 2的技术的快速开发和商业化途径。6Biden总统颁布了正义40倡议7,以确保某些联邦投资的总体收益的40%用于服务不足和受污染负担不足的社区。这样的立方体有可能满足服务不足社区的不成比例需求。Xprize举办了围绕去除二氧化碳的竞争。8他们注意到去除二氧化碳的三个巨大挑战:1}去除二氧化碳所需的大规模规模,2)当前的DAC解决方案太昂贵,而3)政府和市场都缺乏结构激励措施。直接空气捕获(DAC)联盟通过将各种各样的全球创新者汇集在一起,以教育,参与和动员DAC技术来支持国际努力解决气候挑战的努力。9二氧化碳去除底漆是一种有关二氧化碳去除碳基本面及其在解决气候危机中的作用的新资源。10
Energy Vault 与 NuCube Energy 建立战略合作伙伴关系,为 AI 数据中心提供核微反应堆供电,提供灵活的基载、储能和电网服务功能
基于人工智能的结构健康监测的专利计量分析 Pradnya DESAI 1,*、Sayali SANDBHOR 2,*、Amit Kant KAUSHIK 3、Ajit PATIL 4、Vaishnavi DABIR 5 1 研究学者,土木工程系,共生技术学院,共生国际(同等大学),印度浦那。 2 副教授兼土木工程系主任,共生技术学院,共生国际(同等大学),印度浦那。 3 助理教授,建筑与建筑环境系,诺森比亚大学纽卡斯尔,英国 4 助理教授兼土木工程系主任,DYPU,印度浦那。 5 美国佐治亚州 Green Cube Consulting LLC 首席顾问 * 通讯作者:sayali.sandbhor@sitpune.edu.in , pradnya.desai.phd2022@sitpune.edu.in
我们在Finube中提出,这是一种可扩展的方法,用于生成具有高量和可控性的非边界动态3D驾驶场景。以前的场景生成方法遭受有限的尺度或缺乏生成序列的几何和表现一致性。在很重要的情况下,我们利用可扩展的3D表示和视频模型中的最新进步来实现大型动态场景生成,从而可以通过高清地图,车辆边界框和文本描述来实现灵活的控制。首先,我们构建了一个基于地图的基于地图的稀疏体3D生成模型,以释放其无限素素的能力。然后,我们通过一组精心签名的像素一致的指导缓冲液重新使用视频模型,并将其扎根于体素世界,从而综合了一致的外观。最后,我们提出了一种快速的前进方法,该方法使用体素和像素分支来将动态视频提升为动态的3D高斯,并具有控制 -
收到日期:2024 年 7 月 24 日。修改后收到日期:2024 年 11 月 12 日。接受日期:2024 年 11 月 18 日。摘要该研究的目的是设计和模拟用于低地球轨道 CubeSat 纳米卫星姿态控制的稳定系统。电子系统位于机械系统内部,在 Proteus 中设计。机械系统在 SolidWorks 中设计,然后下载 CubeSat 3U CAD 进行仿真,最后组装所有 CAD 设计。这些数据用于分析气动阻力、梯度、重力和磁场的空间环境扰动。通过分析欧拉、泊松和四元数方程来完成姿态表示。然后,创建了一个模糊逻辑控制,并给出了两种自动控制案例。分析和虚拟现实模拟表明,CubeSat 3U 纳米卫星的姿态控制正确,考虑到空间环境的扰动和每个轴的新 25° 方向。关键词:模糊控制;模拟;虚拟现实;机电稳定系统;低地球轨道。
摘要 — 伽马射线模块 (GMOD) 是一项用于探测低地球轨道伽马射线爆发的实验,是 2-U 立方体卫星 EIRSAT-1 上的主要科学有效载荷。GMOD 包括一个与硅光电倍增管耦合的溴化铈闪烁体,由定制的 ASIC 处理和数字化。GMOD 主板上的定制固件已设计、实施和测试,用于管理实验的 MSP430 微处理器,包括系统的读出、存储和配置。该固件已在一系列实验中得到验证,这些实验测试了主要时间标记事件 (TTE) 数据在 50 Hz 至 1 kHz 的实际输入探测器触发频率范围内的响应。研究了固件的功耗和成功接收和传输数据包到机载计算机的能力。实验表明,在标准传输模式下,高达 1 kHz 的数据包丢失率低于 1%,功率不超过 31 mW。所展示的传输性能和功耗均在此 CubeSat 仪器所需的范围内。索引术语 —CubeSat、伽马射线、探测器、伽马射线爆发、欧洲航天局“飞向你的卫星!”计划
MD4和MD5是1990年代初提出的基本加密哈希功能。MD4由48个步骤组成,并产生一个128位哈希,给出了任意有限大小的信息。MD5是MD4的更安全的64步扩展。MD4和MD5都容易受到实际碰撞攻击的影响,但是倒置它们仍然不现实,即找到给定的消息的消息。在2007年,MD4的39个步骤版本通过减少SAT和应用CDCL求解器以及所谓的Dobbertin的约束而反转。至于MD5,在2012年,其28步版本通过CDCL求解器倒置,用于指定的哈希,而无需添加任何额外的约束。在这项研究中,将立方体构孔(CDCL和LookAhead的组合)应用于MD4和MD5的逐步减少版本。为此,提出了两种算法。第一个通过逐渐修改多伯丁的约束来为MD4产生反问题。第二算法尝试具有不同截止阈值的立方体和固定的固定阶段,以找到具有征服阶段最小运行时估计值的一个。该算法以两种模式运行:(i)估计给定命题布尔公式的硬度; (ii)不完整的SAT解决给定的令人满意的命题布尔公式。虽然第一种算法专注于倒数降级MD4,但第二个算法不是特定区域的,因此适用于各种类别的硬式SAT实例。在这项研究中,首次通过第一种算法和第二算法的估计模式倒入40-、41-,42-和43步MD4。另外,通过第二算法的不完整的SAT求解模式将28步MD5倒入四个哈希。对于其中的三个哈希,这是第一次完成。
物理尺寸/重量4 I/O插槽6.2“ W x 8.7” d x 7.1“环境*电气隔离350 VRMS温度(工作)-40°C至70°C温度(存储)-40°C至85°C湿度0至95%,非调节MILSD-810G振动MIL-STD-810G以及下面的IEC Specs(IEC 60068-2-64)10–10006 000-1-1-1-1--BS,5 G(IEC 60068-2-64) 10–500 Hz,5 g,正弦电击MIL-STD-810G加上以下IEC标准(IEC 60068-2-27)100 g,半正弦3 ms,6个方向的18个冲击; 30 g,11毫秒半正弦,在6个方向高70,000英尺的18次冲击,最大EMI/RFI旨在满足MIL-STD-461功率需求电压9-36 VDC(115/220 VAC适配器可用)功率8 W(不包括I/O BOBARDS)功率质量需求,旨在满足MIL-STD-1275 MIL-STD-1275 MIL-STD-1275 MIL-STD-120,000,000,000,000,000,000> 130,000,000,000,000
• 地球观测应用(EO 程序): – 用于公共卫生和昼夜循环气候变化的高分辨率大气监测 => 紧凑型痕量气体光谱成像、微型激光雷达 – 用于天气预报的全球对流层测量 => GNSS 无线电掩星接收器、微波辐射计、Ka 波段降水雷达 – 用于海洋监测的全球海况和冰层测量 => GNSS 反射测量接收器、Ka 波段雷达测高 – 陆地、洪水、火灾隐患的变化检测 => 多光谱和高光谱光学成像(VIS/SWIR/TIR)、SAR 和 AI 软件
不同的 RS 485 门之间应使用双绞线电缆连接,线径 ≥ 0.5 mm²。最大允许距离为 1000 m。在 RS 485 门正下方可以找到跳线。RS485 接口的端子标记为 A、B、S 和 A'、B'、S。A 和 A' 桥接。B 和 B' 桥接。S 是屏蔽连接。A 设计为:非反相接收器输入和非反相驱动器输出。换句话说:Va - Vb > 0.2V = “1” = “ + “ = “非反相”。B 设计为:反相接收器输入和反相驱动器输出。换句话说:Va - Vb < -0.2V = “0” = “ - “ = “反相”。在每个终端设备(第一个和最后一个)上,跳线必须设置在 ON 位置。在中间设备中,跳线必须设置在 OFF 位置或移除。双绞线的屏蔽层必须连接在一侧,而不是另一侧。