自由空间光学(FSO)通信的最新进步正在使卫星微型化和数据传输速率取得突破。Cubeisl激光通信终端(LCT)是德国航空航天中心(DLR)的开发项目,将在2025年推出后以100 Mbps的形式展示100 Mbps的卫星间链接,并以1 Gbps的链接展示。该技术旨在将自己确立为有效的立方体通信的尖端解决方案,从而提供高数据速率。为了验证其能力,该终端在143公里的FSO连接中进行了严格的测试,在加那利群岛的La Palma和Tenerife之间进行了严格的联系。欧洲航天局的光学地面站模仿了下行链路,而两个LCT之间的通信模拟了卫星间链接。本文概述了立方体LCT的当前发育阶段,并提出了其水平链接演示的结果。
Overview .................................................................................................................................................. 3
Satellites, now numbering over 10,000 as of 2024 [43], have transitioned from extraordinary space achievements to common orbital fixtures, especially with the surge in small satellites like CubeSats and nanosatellites. This accessibil- ity has allowed diverse entities, including universities and startups, to engage in space projects. However, the ease of developing these smaller satellites often comes at the cost of security, making them prone to cyberattacks. Teams be- hind these projects may lack comprehensive cybersecurity knowledge, leading to significant vulnerabilities. Furthermore, the evolving nature of cybersecurity means satellite software can quickly become outdated, with updates in orbit posing a challenge, as noted in research like Willbold et al. [47]. Concurrently, there has been a significant evolution in satellite on-board computing, particularly in processing power. This advancement enables small satellites to run full operating systems like Linux, a shift from the basic systems in earlier models. This technological progress enhances satellite func- tionalities but also adds complexity and vulnerability, neces- sitating stronger security measures. As systems become more sophisticated, they are more susceptible to threats, requiring a layered defense approach. Sandboxing is one of the effective methods to isolate software vulnerabilities and protect these advanced systems. In this paper, we discuss the process of selecting a sandbox- ing mechanism for a satellite project currently under develop- ment, named RACCOON [41]. The project's goal is to design
数据立方体是可供分析的数据的公认基石 - 将无数场景同质化为几个时空立方体,并统一空间和时间访问,已被证明可以带来更简单、更具可扩展性的服务 - earthserver.eu
太空系统司令部启动 EWS 立方体卫星技术演示 摘要:太空系统司令部的电光/红外气象系统立方体卫星技术演示成功搭载 SpaceX 的 Transporter-10 小型卫星共乘任务发射。这项为期一年的 EWS 立方体卫星技术演示将验证新兴的太空 EO/IR 辐射成像技术,该技术使用较小的传感器,从低地球轨道提供及时的气象图像数据。加利福尼亚州埃尔塞贡多——3 月 4 日,太空系统司令部 (SSC) 从加利福尼亚州范登堡太空部队基地搭载 SpaceX 的 Transporter-10 小型卫星共乘任务发射了其电光/红外 (EO/IR) 气象系统 (EWS) 立方体卫星技术演示。为期一年的 EWS 立方体卫星技术演示将验证新兴的太空 EO/IR 辐射成像技术,该技术使用较小的传感器,从低地球轨道 (LEO) 提供及时的天气图像数据。“EWS 立方体卫星技术演示工作代表了 SSC 继续致力于与非传统合作伙伴合作,以拓宽竞争性工业基础,同时培育潜在的突破性解决方案,”EWS 物资负责人兼项目经理 Joe Maguadog 中校说。“如果成功,这将提供一种创新的选择来提供我们渴望评估的太空环境监测数据,这对于使我们部署在世界各地的部队能够计划和执行战区联合行动至关重要。这次演示将为我们向更经济、可扩展且更具弹性的 EO/IR 气象星座的过渡提供信息。” 2020 年 6 月,EWS 计划通过竞争选择了非传统政府承包商 Orion Space Solutions (OSS) 来交付用于此次演示的立方体卫星。这次任务迅速重建了之前的 EWS 立方体卫星技术演示原型能力,该原型在 2023 年 1 月经历了在轨分离异常。美国太空部队 (USSF) 与 OSS 密切合作,能够在不到 30 天的时间内授予新合同,并在短短 10 个月内开发了另一颗卫星。
摘要:行进立方体是3D重建的最广泛使用的等曲面算法。在案例研究中,本文使用了来自大脑图像的MRI的医学数据,尤其是在call体(CC)部分中,以及来自Stagbeetle数据集的音量数据。选择此案例研究以突出3D图像可视化的临床重要性。这项研究可以通过显示固体解剖形状和位置来帮助,这可以指导脑损伤的位置,而小于1 mm的较小误差;因此,它可以支持和最大程度地减少脑外科手术的风险。案例研究是称为call体的大脑的一部分,通常用作脑部手术的参考。对于输入数据,本文使用深度学习方法使用2D分割来获得CC段。本文使用120名患者,培训80%,在国家医院进行测试20%。本文发现了11个矢状切片,其中包含每位患者的166个切片中的call体。这项工作提出了一种改进的MC算法,为现有规则增加了20个新规则,加强了Voxel代表的规则,并将原始的Martinging Cubes算法的15条规则增加到35。因此,3D重建模型覆盖了大孔,使其在很大程度上固体。拟议的3D可视化实现了来自国家医院的数据集的零开放边缘。结果表明,应用改进的行进立方体算法产生了一个3D表示,其结果更好,更健壮,这证明了存在更多的顶点和三角形以及不存在开放边缘的情况。高级游行立方体是拆除开放边缘的好方法。
与蒙彼利埃大学航天中心(CSUM)合作开发,ENSO(用于太阳 - iRradiance观察的纳米纳斯特)是一个R&D立方体,旨在通过帮助测量太阳能活动及其对地球的影响来帮助电离层表征电离层。