Andalusia Severo Ochoa的技术公园13 - 29590马拉加(西班牙)DHV技术| Cubesat开发人员研讨会。 2023年4月25日至27日。 Cal Poly,Slo,CA。Andalusia Severo Ochoa的技术公园13 - 29590马拉加(西班牙)DHV技术| Cubesat开发人员研讨会。2023年4月25日至27日。Cal Poly,Slo,CA。
辐射指南 是一份有关辐射以及可能导致卫星故障或损坏的辐射影响的教育和指导文件。提供资源以解决开始构建硬件和遇到需要考虑辐射的设计时的问题。
项目成员和学生经验:任务分析系统设计系统开发组件采购组件开发系统集成系统集成板软件 /算法开发地面验证地面环境测试地面环境测试安全审查,安全审查卫星交付和启动地面站安装地面安装
技术特性 UPS 额定功率 (kVA) 800 至 1600 输出有功功率 (kW) 800 至 1600 输入交流参数 整流器/旁路输入电压 (VAC) 480,三相,三线 允许输入电压范围 +10%,-10% 输入频率 (Hz) 60 ± 5Hz 输入功率因数 ≥ 0.99 额定电压下的输入电流失真 (THDi) 满载时 (%) ≤ 3.0 电源启动时间 (秒) 1 至 90(可选,以 1 秒为增量) 内部反馈保护 是 输入连接 单馈或双馈 短路耐受额定值 (kA) 100 电池和直流参数 电池类型 Vertiv HPL、锂离子、VRLA(阀控铅酸电池)、VLA(通风铅酸电池) 标称电池总线 (VDC)/电池浮动电压 (VDC) 480 / 540 浮动电压下的直流纹波 < 1.0% (RMS 值) < 3.4% Vpp 温度补偿电池充电标准,采用 Vertiv™ VRLA 电池柜 输出参数 支持的负载功率因数(无降额) 0.7 领先至 0.4 滞后 输出电压 (VAC) 480,三相,三线 输出电压调节率 (%) / 输出电压调节率(50% 不平衡负载)(%) < 1.0(三相 RMS 平均值)/ < 2.0(三相 RMS 平均值) 输出频率 (Hz) 60 ± 0.1% 标称电压下的输出 THD(线性负载)(%) ≤ 1.5(RMS 值) 标称电压下的输出 THD,包括符合 IEC 6204-3 的 100kVA 非线性负载(%) ≤ 5.0(RMS 值) 瞬态恢复 100% 负载阶跃 / 50% 负载阶跃 / 交流输入功率损失/返回 ±4% / ±2% / ±2% (一个周期的 RMS 平均值) 电压位移 (平衡负载)/电压位移 (50% 平衡负载) 120 度 ±1 度/120 度 ±2 度 额定电压和 77°F (25°C) 下的过载 110% 连续,125% 持续 10 分钟,150% 持续 60 秒,200% 持续 200 毫秒
立方体卫星这种纳米卫星引起了空间科学家和工程师的关注,他们希望观察太空环境并开发空间工程的创新技术。立方体卫星是一种小型卫星,其外形尺寸基于 10 厘米立方体。然而,立方体卫星的尺寸限制限制了将相对较大的任务设备(例如姿态控制系统)嵌入卫星。此外,用于传输数据和为任务设备供电的线束也占用了嵌入任务设备的物理空间。因此,本研究调查了早期关于纳米卫星线束设计的研究。此外,我们考虑了卫星总线系统光学无线线束的可能性,以实现更有效、更可靠的立方体卫星设计。
CCR部分编号:14 CCR 15301 CAL。 代码regs。,标题14,秒。 15301 provides that projects which consist of the operation, repair, maintenance, permitting, leasing, licensing, or minor alteration of existing public or private structures, facilities, mechanical equipment, or topographical features, and which involve negligible or no expansion of use beyond that existing at the time of the responsible agency's determination, are categorically exempt from the provisions of the California Environmental Quality Act. 该项目将位于加利福尼亚州圣利安德罗市,毗邻Cuberg现有工厂,位于一个适合Cuberg将要执行的制造业活动的工业将军分区区。 项目范围包括将现有仓库外壳转换为合适的2019年加利福尼亚建筑代码F占用建筑物,以容纳Cuberg的电池制造线。 要完成的施工工作包括建筑物脱落墙壁和内部分离,电气升级,增加核心洗手间,添加HVAC系统以及结构/地震升级。 一旦操作开始,要完成的制造工作包括电极涂料,电池组件,电解质填充,编队,调节,包装和运输。 因此,该项目属于15301节,不会对环境产生重大影响。CCR部分编号:14 CCR 15301 CAL。代码regs。,标题14,秒。15301 provides that projects which consist of the operation, repair, maintenance, permitting, leasing, licensing, or minor alteration of existing public or private structures, facilities, mechanical equipment, or topographical features, and which involve negligible or no expansion of use beyond that existing at the time of the responsible agency's determination, are categorically exempt from the provisions of the California Environmental Quality Act.该项目将位于加利福尼亚州圣利安德罗市,毗邻Cuberg现有工厂,位于一个适合Cuberg将要执行的制造业活动的工业将军分区区。项目范围包括将现有仓库外壳转换为合适的2019年加利福尼亚建筑代码F占用建筑物,以容纳Cuberg的电池制造线。要完成的施工工作包括建筑物脱落墙壁和内部分离,电气升级,增加核心洗手间,添加HVAC系统以及结构/地震升级。一旦操作开始,要完成的制造工作包括电极涂料,电池组件,电解质填充,编队,调节,包装和运输。因此,该项目属于15301节,不会对环境产生重大影响。
立方体卫星等纳米卫星的可用体积对望远镜直径施加了物理限制,限制了可实现的空间分辨率和光度测定能力。例如,12U 立方体卫星通常仅具有足够的体积来容纳直径为 20 厘米的单片望远镜。在本文中,我们介绍了可部署光学器件的最新进展,该器件可在 6U 立方体卫星中容纳直径 30 厘米以上的望远镜,其中 4U 的体积专用于有效载荷,2U 的体积专用于卫星总线。为了达到这种高紧凑度,我们在发射时折叠主镜和次镜,然后在空间中展开和对齐。通过控制每个镜段的活塞、倾斜和倾斜,可实现可见光谱部分的衍射极限成像质量。在本文中,我们首先描述整体卫星概念,然后报告有效载荷的光机设计以部署和调整镜子。最后,我们讨论了主镜的自动相位控制,以控制望远镜的最终光学质量。
eSTACä〜ao多用途natal(natal Multi-Mission Station)(EMMN)是由属于遗产卫星跟踪系统的更新过程,该过程属于属于tuto nacional de pessquisas Espaciais(国立空间研究所)(INPE)(INPE)。作为地面站,目的是在操作员与各自的轨道卫星之间提供安全的通信联系。为此,地面段authatialation用卫星和操作员之间的经纪人充当经纪人,使用虚拟专用网络(VPN)(vpn)和可重新配置的射频频率(RF)通道,以非常高的频率(VHF),Ultra高频(UHF)和S频带为后者提供加密的数据链路。EMMN的操作架构在以太网网络中使用基于分布式系统的开源软件以及SOLITYS,从而可以更好地扩展功能复合物的每个组件的可扩展性和维护。通过自动系统“触发”服务的服务,用于调度卫星通行证,其优先级是预定义的,使用消息排队遥测传输(MQTT)协议启动了分布式服务的编排。在这一点上,在精心策划的过程中进行了三个主要操作,一个与无线电相关,另一个与跟踪系统有关,而第三个与操作中涉及的地面细分之间的通信相关。激活的第一个任务是由软件定义的Radio(SDR)和微控制的一组交换机之间的协作组成的,以将所需的天线连接到信号放大器。这允许使用UHF,VHF和/或S频段的通道配置,并进一步配置SDR中的信号处理以根据目标卫星调节/解调信号。另一个任务是由机电组形成的天线跟踪系统,该系统也已更新为微控制方案。它通过转移要跟踪的卫星的两行元素(TLE)而生成的ephemeris表执行跟踪,并自动从Internet获得。最后一个任务是远程通信系统,它使外部卫星操作员能够通过传输控制协议(TCP)和VPN访问站点,从而提供了访问遥测,跟踪和命令(TT&C)服务的访问权限,并提供了使任务指定的地面与地面与地面与地面通信通信协议的完全合规性。本文将介绍使用EMMN涉及其多误差操作的经验的报告,并从跟踪某些卫星的数据中得出了数据。
摘要。本文介绍了配备四个 PNI RM3100 磁强计的 CubeSat 磁强计板 (Quad-Mag) 的设计、特性和性能。RM3100 体积小、重量轻、功耗低且成本低,因此可以在单个板上集成四个传感器,通过使用多个传感器进行过采样,可以将单个传感器的本底噪声降低 2 倍。该仪器在实验中实现了 5.34 nT(单个轴)的本底噪声,四个磁强计的每个轴的平均本底噪声为 65 Hz,接近理论上为系统设定的 4.37 nT(40 Hz 下)的极限。单个板载德州仪器 MSP430 微控制器负责处理磁强计的同步,并通过简单的基于 UART 的命令接口与主机系统进行数据收集。 Quad-Mag 系统重量为 59.05 克,采样时总功耗为 23 mW,空闲时为 14 mW。在最佳条件下,Quad-Mag 可使用商用现成的太空应用传感器以 1 Hz 的频率实现近 1 nT 的磁场测量。
