摘要:增材制造 (AM) 在航天领域的应用日益广泛,这促使我们研究了通过复合行星齿轮系系统 (C-PGTS) 集成动态平衡系统 (DBS) 并完全通过 AM 实现的单自由度 (DoF) 指向系统 (PS) 的可行性。我们详细分析了系统的动力学,涉及原型的设计和实现。对于本文而言,至关重要的是精心选择适合太空恶劣条件的 AM 材料。通过比较实验部分和模拟结果,我们强调了 PS 的正确尺寸以及 DBS 在维持卫星姿态方面的重要性。结果还证实了 AM 在生产复杂机械系统方面的能力,该系统具有高精度、有趣的机械性能和低重量。这表明 AM 在空间领域具有潜力,既可用于结构部件,也可用于本文中列出的有源部件。
GLIDE(HPD) GTOSAT(HPD) LAICE(HPD) LLITED(HPD) PETITSAT(HPD) PUNC H(HPD) REAL(HPD) SOLAR CRUISER(HPD) TRACE RS(HPD) SPORT(HPD) SUNRI SE (HPD) IT C (HPD) ESCAP ADE (HPD) SWFO-L1 (JASD) JAN US (PSD)LUNAR开发器(PSD)ACS3(STMD)CISLUNAR Explorer(STMD)单击A(STMD)单击B / C(STMD)Capstone(STMD / HEOMD)COURIER SEP SEP DEMO(STMD)CU-E3(STMD)CU-E3(STMD)CU-E3(STMD)CU-E3(STMD)cu-e3(stmd)
这项工作的重点是用于Cubesat应用的PC/104电子板的开发。特别关注板载计算机模块(OBC)。基于ARM技术的通用OBC由支持各种接口的STM32L4微控制器控制。它的其他功能包括强大的电源管理,单独的外围隔热材料,三重冗余闪光灯和F-RAM内存,两个CAN BUS通信器,内置监控 - 不温度和广泛的有用货物行业。在伽马辐射的来源下,进行了靶向辐射测试。还开发了三个板,包括OBC的双重版本,通用PC/104模块和一个Flatsat测试平台。所有这些董事会都是根据KICAD环境中开源原则推动的。这项工作通过引入用于任务管理系统的测试系统和压缩算法的测试系统的硬件工资来为Vivionspace Technologies VOV104项目做出了贡献。
•科罗拉多大学(CU)研究生项目在2012年发起了新的Cubesat Mission概念。最初,它专注于研究热圈(Aurora)的远紫外线(FUV)。•FUV成像的数据量对于UHF通信而言太大,因此2013年的重点变为研究太阳能软X射线(SXR)排放,这是电离层的关键能量输入。•提出了该任务称为微型X射线太阳能光谱仪(MINXSS),并于2014年选择。
多尺度实验 (SWARM-EX) 是由三颗立方体卫星组成的集群,将以综合方式探测赤道电离和热层异常(300 公里 - 600 公里)。• 卫星间距离从 0.25 公里到 1000 公里不等。• 这项探索任务具有科学、工程和教育目标。• 由大学牵头的与 6 所大学的合作项目
摘要:虽然气象数值模型向上扩展到中间,但领先的模拟和数值天气预测和气候预测需要中层观测。这项工作回顾了有关温度观察要求的一些挑战以及与大气潮相关的实际测量的限制因素。在这里使用基于先前空间实验的肢体分散技术进行了新的策略。此类观察值可与立方体卫星一起使用。技术问题是测量所需的大动态范围(四个数量级),肢体指向的准确性和流量光的水平。此处描述的技术将期望1-2 K的精度为1-2 km。100个平台的星座可以提供空间(100 km)和世界气象组织建议的时间(3 h)决议,并且可以使用至少3-5个平台来解决潮汐问题,并具有特定的轨道,以避免漂移。
Cube卫星(也称为Cubesats)是在20世纪后期开发的,此后一直是收集这个世界外数据的一种经济高效的方法。这些小规模卫星的发展已帮助全世界的大学和小型公司进行重要的实验,并收集关键数据以提供进一步的空间探索。立方体卫星设计为自我维持。为了正常运行,这些单元格在与航天器正常的阵列中扩展,该阵列与发射车分离后自动部署。根据国家航空航天局(NASA)进行的一项研究,太阳能电池板是Cobesats总体系统故障的最多CO1M11ON。这要求需要低成本,可靠的太阳能阵列部署系统。对这种部署系统的要求的理解是由太空动态实验室,具有相关经验的个人以及目前正在使用的设计的探索提供的。由于这项研究的结果,确定多个磁带弹簧铰链以及托架和功能区电缆最能满足客户的需求。这个简单的设计提供了
当NASA的太空发射系统(SLS)火箭在2021年与Orion Crew车辆发射时,它将为NASA的目标奠定基础,即在Artemis计划的一部分中登陆第一位女士和下一个男人。第一次航班 - Artemis I-也将标志着Smallsats的里程碑。13个6u立方体显示在Artemis I飞行中,这是第一架立方体的舰队,作为乘车场的乘车机会。(NASA的第一个Cubesats到Deep Space,Twin Mars Cube One [Marco]航天器是Insight Mars Lander Mission不可或缺的一部分)。Artemis I Cubesat明确代表了各种各样的Smallsats,执行了一系列科学任务和技术演示。来自NASA,国际合作伙伴,学术界和行业的有效载荷将执行各种实验。几个小萨特人将执行以月球为重点的任务,这些任务可能会返回数据,以解决该机构的月球勘探计划中的战略知识差距(SKG)。的确,Artemis I Cubesats将在该机构21世纪Lunar计划的先锋队中。Artemis I任务将产生数据,以支持太空辐射意识,船员着陆和现场资源利用,有助于支持持续的人月球存在。几个Artemis I Cubesats正在展示新技术,包括推进功能。在Artemis I Cubesats中,是NASA的Cube Question挑战的三个,这是百年挑战计划的一部分。这三个任务将在达到特定技术发展目标的同时争夺奖金。日本和意大利太空机构的有效载荷为国际参与Artemis计划提供了早期机会。学生参与几乎一半的有效载荷允许STEM与NASA的Artemis计划互动。Artemis I Flight的SLS Block 1车辆由几个元素运送到肯尼迪航天中心(KSC),并准备堆叠和集成。该程序的新开发,即212英尺的核心阶段,其安装了四个RS-25发动机目前在Stennis Space Center(SSC)进行“绿色运行”测试。在绿色运行测试活动之后,舞台将运送到KSC,在那里它将与其余车辆集成,包括上层阶段适配器,其中Artemis I Smallsats将被容纳。
多年来,NASA 的任务保障组织支持了许多大大小小的太空任务和计划。如今,该范围已经扩大,从旗舰任务(如搭载有毅力号探测器的火星 2020、欧罗巴快船和拟议中的欧罗巴着陆器)到小型卫星/立方体卫星(如风暴和热带系统时间实验——演示 (TEMPEST-D) 和火星立方体一号 (MarCO))。塑料封装微电路 (PEM) 变得更具吸引力,因为尖端替代品无法作为太空级产品提供。PEM 通常比太空级产品中使用的陶瓷封装更小、更轻 [1]。随着太空对非密封和塑料封装微电路的需求和使用增加,未来任务的范围也扩大了。与 EEE 零件选择相关的这种不断变化的环境给 NASA 带来了新的挑战,NASA 一如既往地将每项任务的成功视为重中之重。
