Objectives: Bloom's Taxonomy Knowledge tell review locate recognize match state memorize choose read Comprehension restate define review describe generalize give main idea locate reproduce paraphrase Application show illustrate teach apply record construct make determine use translate draw practice Analysis summarize compare analyze abstract contrast deduce classify categorize investigate dissect examine distinguish Synthesis hypothesize invent infer imagine propose estimate modify design produce improve predict forecast Evaluation editorialize select decide grade defend evaluate choose discuss dispute assess verify rate Assessment Strategies performance demonstration oral presentation label diagram oral questioning athletic performance create a flow chart quiz conferencing rubric journal/learning log recipes poem collections newsletters art exhibit commercials diorama essay multi-media presentation portfolio musical performance lab report debate Differentiated Instruction Content Product Process reading levels exhibitions independent choose research topic portfolios small group interest art guided group curriculum紧凑的书面大型小组选择在写作主题演示文稿中口头多样化的思想tac-toe学习日志书面期刊触觉立方体辩论分层分配延长角色扮演拼图11
1. 简介 3D 建模是使用专门的计算机程序创建和修改三维对象的过程,该程序为用户提供了一组必要的工具。 3D 建模通常从基本形状(基元)开始,例如立方体、球体、圆环等。然后通过软件提供的不同功能修改这些形状。用户通常通过按下键盘上的组合键或从用户界面中选择它们来激活这些功能。如今,有许多功能强大的 3D 建模软件,可以创建 3D 资源、动画、特效和渲染图像。最受欢迎的付费应用程序是 Autodesk Maya、Autodesk 3ds Max 和 Cinema 4D。也有许多免费应用程序可用,但最受欢迎的应用程序是 Blender。Blender 是一个免费的开源 3D 计算机图形软件工具集。它用 C、C++ 和 Python 编程语言编写。Blender 基金会是一个负责 Blender 开发的非营利组织。 Blender 也是由社区开发的,社区创建了用 Python 编写的附加插件(称为附加组件)。附加组件为 Blender 添加了新功能或改进功能。由于 Blender 发展基金的成立,Blender 最近获得了 Epic Games、Nvidia 或 Intel 的大量资金支持。它使 Blender 基金会能够招募新的团队成员,从而更快地开发 Blender。
摘要 - 最常见的材料之一是具体的。混凝土由于其高抗压强度以及其他好处,例如防水性,低维护成本,易于成型,成型尺寸和形式,低制造能源消耗等等,因此优于其他建筑材料。某种形式的拉伸加固对于混凝土是必需的。在这项研究中,将石墨烯添加到M30级的混凝土中,以提高其分裂的拉伸强度,抗压强度和抗裂纹时的抵抗力。“高剪切去角质”是混合石墨烯和水的过程的术语。石墨烯和混凝土之间存在明显的差异。用石墨烯折叠的混凝土还降低了“碱 - 硅基反应”。这项研究的目的是使用水泥复合材料来研究石墨烯及其衍生物。在这项工作中采用的石墨烯中的氧化硅官能团被聚合并使与水泥水合物的化学相互作用变得无效。石墨烯的另一种用途是作为抗腐蚀覆盖物。我们正在测试地石墨烯的不同百分比-0.5%,1.0%,1.5%和2.0%的水泥重量 - 在混凝土样品中,尺寸为150 x 150 x 150毫米的立方体,横梁和500 x 100 x 100 mm的横梁。将结果与常规水泥混凝土的结局进行了比较。在添加不同百分比的石墨烯后的7、14和28天后检查了混凝土标本的机械特性。“混凝土的最佳强度”是结果。
纠缠现象是量子物理学的显着特征,在量子信息理论的许多领域中已被识别为关键成分,包括量子密钥分布[4],超密集编码[1]和传送[2]。然而,如何构建真正的多部分纠缠状态的一般问题仍未解决。在某种程度上取得了一些进展[5] - [7],[10],[20],但是手头的任务通常被认为是一个困难的任务。常常是这种情况[15],[17],组合学对于量子信息理论很有用,而正交阵列(OAS)是构建其他有用的组合对象的基本成分[9]。最近,已经提出了许多新的构建强度K的OA,尤其是混合正交阵列(MOAS),并且已经获得了许多新的OA类[3],[16],[18],[19],[19]。正是OAS中的这些新事态发展表明,在许多新的真实多部分纠缠的状态中构建的可能性。如果每次减少对K派对的每一次减少均最大混合,则据说由n> 2政党组成的异质多部分系统的高度纠缠量子状态被认为是均匀的[6]。这些状态与混合字母的量子误差校正代码密切相关。最近,作者在[8],[11],[12],[22]中引入了量子拉丁正方形,立方体,高管和量子正交阵列。他们还证明了
摘要:纤维增强聚合物是一种由纤维和树脂组成的先进复合材料。这是修复现有结构和新结构的一种经济高效且有效的材料。此外,这些复合材料具有出色的机械性能,包括强度,抗冲击力,刚度,承载能力和柔韧性。这项实验研究旨在研究经过机械和非破坏性测试时包裹在不同层中的AFRP和CFRP材料的行为。确认M30级的具体研究用于这项实验研究。为了确保在整个研究中确保一致的具体质量,施放了各种测试标本并进行标准测试,包括压缩测试,分裂拉伸测试,破裂模量,弹性模量以及对硬化混凝土的影响测试。此外,回弹锤和UPV测试是确定混凝土质量的两种重要NDT方法。使用各种样品进行了测试,包括立方体(150mmx150mm),气缸(150mmx300mm),棱镜(100mmx100mmx500mm)和圆盘(63.5mm x 152.4mm)。实验结果表明,与单个和双层包装中的AFRP和无限制样本相比,与CFRP限制的混凝土标本相比具有更高的强度。关键字:纤维增强聚合物,环氧树脂,芳香纤维增强聚合物,碳纤维增强聚合物,机械性能,NDTA,单层和双层层。
标准)●代数:代数,扩展,分解,二次方程,指数,对数,算术,几何和谐波进程,二项式定理,排列和组合的基本操作。●坐标几何形状:矩形笛卡尔坐标,线的方程,中点,相交等等,圆的方程,距离公式,一对直线,抛物线,抛物线,椭圆形和双曲线,简单的几何形状,简单的几何变换,例如翻译,旋转,量表,缩放,尺度。●微分方程:一阶的微分方程及其解,线性微分方程具有恒定系数,均匀的线性微分方程。●三角学:简单的身份,三角方程,三角形的特性,三角形解决方案,高度和距离,逆函数。●概率和统计:概率理论的基本概念,平均值,依赖和独立事件,频率分布以及分散,偏斜和峰度,随机变量和分布功能,数学期望,二项式,POISSON,POISSON,正常分布,正常分布,曲线拟合以及最小二乘的智慧和智慧的Squares,corle&Repartration,corpar和Recorpration和Recorpration。●算术:比率和比例,时间工作问题,距离速度,百分比等。●基本集合理论和功能:集合,关系和映射。●测量:圆,体积和表面积的区域,三角形和四边形,圆周和圆周,例如立方体,球体,圆柱体和锥体。b)逻辑 /抽象推理:这将包括衡量您可以思考的速度和逻辑的问题。
1。数学(40个标记): - 数字系统,多项式,两个变量中的线性方程,二次方程,算术进展,坐标几何学,三角测定,三角形,概率,三角形,三角形,四边形,四边形,四边形,圈子,圆,统计,统计。2。科学(60分):: a)物理学(20分): - 光反射和倒置,电力,电流的磁效应。人类的眼睛和丰富多彩的世界,能源的来源。b)化学(20分): - 原子和分子,原子结构,反应和方程,酸,碱和盐,金属和非金属,碳及其化合物,元素的定期分类。c)生物学(20分): - 植物和人类的有性繁殖(生物如何繁殖),控制与协调,生命过程,遗传和进化,我们的环境。3。英语(20分): - 时,语音,词汇和错误校正,介词,标签问题,文章和确定词以及语音的部分。4。心理能力测试和推理(30分):-1。逻辑推理: - 陈述和结论,参数和假设,三段论,数字序列和模式; 2。数学推理: - 数字和操作,代数表达式和方程,几何和月经,数据分析和解释; 3。非语言推理: - 视觉难题和图案,镜像图像和反射,立方体和骰子,纸张折叠和切割; 4。言语推理: - 类比和关系,单词形成和模式,编码和解码,分类和分类; 5。批判性思维: - 确定偏见和假设,评估论点和证据,得出推论和得出结论,解决道德或道德困境。
合成具有可控成分、尺寸和形状的单分散胶体纳米晶体 (NC) 为组装新薄膜和设备提供了理想的构件。这些单分散胶体 NC 充当具有可调电子、光学和磁性的“人造原子”,可用于开发用于中观尺度设计的新型周期表。在本次演讲中,我将简要概述单相 NC 和核壳(异质结构)NC 的合成、纯化和集成的最新技术水平,强调具有可调形状(球体、道路、立方体、圆盘、八面体等)的半导体构件的设计。然后,我将分享如何将这些定制的 NC 组装成单组分、二元、三元 NC 超晶格,为生产多功能薄膜提供可扩展的途径。这些 NC 的模块化组装可以增强底层量子现象的理想特征,即使 NC 之间的相互作用允许出现新的非局域特性。在我们推动实现具有新 3D 结构和高迁移率(>30 cm2V-1S-1)设备集成的人造固体时,将强调 NC 之间电子和光学耦合的协同作用。我将分享薄膜晶体管、热电材料和可溶液处理的光伏方面的具体案例研究使用这些强耦合纳米晶体固体构建的设备突出了晶圆级 NC 超晶格沉积和图案化的最新发展,可能为可扩展制造提供途径。我还将分享微流体超粒子组装方法的进展。创建跨越数百纳米到数十微米的中尺度结构作为下一个构建单元尺度。
摘要:胶体纳米晶体 (NC) 的自组装在固态材料的多尺度工程中具有巨大前景,通过这种技术,原子工程 NC 构件被排列成具有协同物理和化学性质的长程有序结构 超晶格 (SL)。迄今为止,报告主要集中在球形 NC 的单组分和二元系统上,产生的 SL 与已知的原子晶格同构。通过组合各种形状的 NC,可以预期获得远远超出已知晶格范围的更大结构空间。本文报道了空间稳定的 CsPbBr 3 纳米立方体 (5.3 纳米) 与圆盘状 LaF 3 NC (直径 9.2 - 28.4 纳米,厚度 1.6 纳米) 共组装成二元 SL 的过程,产生了具有 AB、AB 2 、AB 4 和 AB 6 化学计量的六柱状结构,这在之前和我们的参考实验中均未观察到,参考实验中使用由球体和圆盘组成的 NC 系统。本文使用填充密度计算合理化了立方体形状的这种惊人效果。此外,在尺寸相当的纳米立方体(8.6 纳米)和纳米盘(6.5 纳米、9.0 纳米、12.5 纳米)系统中,还观察到了其他非柱状结构,例如 ReO 3 型 SL,其特征是盘和立方体的紧密混合和面对面排列,纳米立方体的面心立方或简单立方亚晶格,以及每个晶格位置有两个或三个盘。层状和 ReO 3 型 SL 采用大型 8.6 纳米 CsPbBr 3 NC,表现出集体超快光发射 超荧光 的特征,源自激发态发射偶极子的相干耦合。关键词:胶体纳米晶体、纳米晶体形状、自组装、二元超晶格、电子显微镜、卤化铅钙钛矿、超荧光 I
摘要。目的:本研究的创新之处在于探索了多种脑电波信号数据预处理的新方法,其中提取统计特征,然后根据降维算法选择它们的顺序将其格式化为视觉图像。然后,这些数据被处理为 2D 和 3D CNN 的视觉输入,然后进一步提取“特征的特征”。方法:从三个脑电图数据集得出的统计特征在视觉空间中呈现,并分别在 2D 和 3D 空间中处理为像素和体素。对三个数据集进行了基准测试,即来自四个 TP9、AF7、AF8 和 TP10 10-20 电极的心理注意力状态和情绪价以及来自 64 个电极的眼睛状态数据。通过三种选择方法选择了 729 个特征,以便从相同的数据集中形成 27x27 图像和 9x9x9 立方体。为 2D 和 3D 预处理表示而设计的 CNN 学习从数据中卷积有用的图形特征。主要结果:70/30 分割方法表明,在 2D 中,特征选择分类准确度最高的方法是注意力状态的单一规则和情绪状态的相对熵。在眼部状态数据集中,3D 空间最佳,由对称不确定性选择。最后,使用 10 倍交叉验证来训练最佳拓扑。最终最佳 10 倍结果是注意力状态(2D CNN)97.03%,情绪状态(3D CNN)98.4%,眼部状态(3D CNN)97.96%。意义:本研究提出的框架的结果表明,CNN 可以成功地从一组预先计算的原始 EEG 波的统计时间特征中卷积出有用的特征。 K 折验证算法的高性能表明,除了预先计算的特征之外,CNN 学习到的特征还包含对分类有用的知识。