1 LATMOS、CNRS、凡尔赛圣康坦伊夫林大学、巴黎萨克雷大学、索邦大学 (SU),11 Boulevard d'Alembert,78280 Guyancourt,法国; Philippe.Keckhut@latmos.ipsl.fr (PK); Alain.Sarkissian@latmos.ipsl.fr(AS); Thomas.Bouteraon@latmos.ipsl.fr(TB); Slimane.Bekki@latmos.ipsl.fr (SB); Luc.Dame@latmos.ipsl.fr(LD); Patrick.Galopeau@latmos.ipsl.fr(PG); Alain.Hauchecorne@latmos.ipsl.fr(AH); Christophe.Dufour@latmos.ipsl.fr (光盘); Adrien.Finance@latmos.ipsl.fr(AF); andre-jean.vieau@latmos.ipsl.fr(A.-JV); emmanuel.bertran@latmos.ipsl.fr(EB); pierre.gilbert@latmos.ipsl.fr(PG); nicolas.caignard@latmos.ipsl.fr (北卡罗来纳州); clement.dias@latmos.ipsl.fr (光盘); Jean-Luc.Engler@latmos.ipsl.fr(J.-LE); patrick.lacroix@latmos.ipsl.fr (PL)2 DEMR,ONERA,巴黎萨克雷大学,6 Chemin de la Vauve aux Granges,91123 Palaiseau,法国; fabrice.boust@onera.fr(脸书); Kevin.grossel@onera.fr(KG); Veronique.Rannou@onera.fr (虚拟现实); stephane.saillant@onera.fr (SS)3 ACRI-ST–CERGA,10 Avenue Nicolas Copernic,06130 Grasse,法国; Valentin.Stee@acri-st.fr(VS); Antoine.Mangin@acri-st.fr (AM) 4 PIT, OVSQ, 11 Boulevard d'Alembert, 78280 Guyancourt, 法国; pierre.maso@uvsq.fr(下午); sebastien.ancelin@uvsq.fr (SA)5 Adrelys, 52 rue Paul Lescop, 92000 Nanterre, 法国; yavelino@adrelys.com 6 Oledcomm, 10-12 Av. de l'Europe, 78140 Vélizy-Villacoublay, 法国; benjamin.azoulay@oledcomm.net (BA); cyril.brand@oledcomm.net (CB); carlos.dominguez@oledcomm.net (CD) 7 ISIS–Innovative Solutions in Space BV, Motorenweg 23, 2623CR 代尔夫特,荷兰; a.haasz@isispace.nl (AH); a.paskeviciute@isispace.nl(美联社) k.segura@isispace.nl (KS)8 AMSAT-Francophone,14 bis rue des Gourlis,92500 Rueil Malmaison,法国; christophe.mercier@amsat-f.org 9 比利时空间航空研究所(BIRA-IASB),Ringlaan 3, 1180 Brussels, Belgium; David.Bolsee@aeronomie.be 10 凡尔赛大学圣康坦伊夫林分校流行病学和抗生素逃避建模 (EMAE) 部门,巴黎萨克雷大学,校长办公室和中央服务部,巴黎大道 55 号,78035 凡尔赛,法国; catherine.billard@uvsq.fr * 通信地址:Mustapha.Meftah@latmos.ipsl.fr;电话:+33-180-285-179
摘要 美国宇航局地球科学技术办公室 InVEST(地球科学技术空间验证)计划资助的 HyTI(高光谱热像仪)任务将演示如何从 6U 立方体卫星平台获取高光谱和空间长波红外图像数据。该任务将使用空间调制干涉成像技术生成光谱辐射校准的图像立方体,该立方体有 25 个通道(8-10.7 m 之间,分辨率为 13 cm -1),地面采样距离约为 60 m。HyTI 性能模型表明窄带 NE Ts 小于 0.3 K。HyTI 的小巧外形是通过使用无活动部件的法布里-珀罗干涉仪和 JPL 的低温冷却 HOT-BIRD FPA 技术实现的。发射时间不早于 2021 年秋季。HyTI 对地球科学家的价值将通过机载处理原始仪器数据来生成 L1 和 L2 产品来展示,重点是快速提供有关火山脱气、地表温度和精准农业指标的数据。
功率目的●提供,存储,分发和控制立方体电力。功能●从光伏(PV)单元中吸收能量,并将其提供给系统●当能量产生的能量不足并尽可能地存储过多的能量时,用于供电负载的电池存储系统。●为了选择适当的配置,研究了UPSAT的任务来评估环境条件和所需的能量所需的子程度职责●创建PCB以支持任务,选择MCUS和太阳能电池等组件,并构建整个设计。设计●7(30%)PV单元与电池阵列通过电压升压转换器并联,用EPS微控制器实现P&O MPPT算法●电池阵列:3 LI-PO电池(3.7V,4AH)可变电压6V 〜8.4V●MOSFET开关范围power Distraption
立方体卫星是用于空间研究的微型卫星,每个单位的质量不超过 1.33 公斤。由于其制造成本低和应用灵活性,它们被广泛应用于太空应用。由于它们使用商用现货组件,因此必须考虑 1 单位立方体卫星内部组件的热性能。本文对 1 单位立方体卫星进行了瞬态热分析,以分析其从运载火箭进入轨道后的前 29 秒内的行为。瞬态热分析得出的温度范围超过了最佳极限。因此,为了减少热量耗散,卫星的热管理系统主要包括两种类型:主动控制系统和被动控制系统。为了将关键组件维持在其工作温度,实施了被动热控制。使用隔热带和多层绝缘来分析 1 单位立方体卫星的内部组件。使用石墨纤维隔热带和气凝胶多层绝缘作为内部组件,发现 1 单位模块化立方体卫星更适合在低地球轨道条件下使用。关键词:立方体卫星;瞬态热分析;被动热控制;热带;MLI
摘要 在拥挤的低地球轨道 (LEO) 区域,对空间碎片的检测、跟踪和分类需求日益增加。检测碎片的一种方法可能是使用基于空间的无源双基地雷达 (PBR)。STRATHcube 项目提议将立方体卫星发射到 LEO 作为 PBR 技术演示器,在那里将测试斯特拉斯克莱德大学开发的用于检测空间碎片的信号处理算法。该概念涉及在低空轨道上运行的立方体卫星上的雷达接收器和天线,以检测在高空轨道上运行的运行卫星发射的无线电信号。这些信号可能已被在运行卫星和立方体卫星之间运行的物体修改,因此表明存在碎片。本文将介绍将 PBR 技术集成到立方体卫星上作为 STRATHcube 任务的有效载荷,并讨论由于小型平台的限制而面临的挑战。研究了使用定制的 3D 天线和现成的贴片天线作为有效载荷的设计选项。完成了每个选项的高级设计,以评估它们对可跟踪碎片大小的能力并确定其质量和功率参数。在系统层面进行了广泛的权衡分析,以缩小立方体卫星平台上 PBR 有效载荷的选项范围后,确定贴片天线选项是促进立方体卫星上实验的最佳方式,因为它体积小、质量大。STRATHcube 任务的完整设计将使 PBR 技术在轨演示成为可能,如果成功,将为太空界提供一种比传统地面跟踪更便宜、更方便的替代方案。这种方法将向业界证明,业界可以使用这种方法在未来更大规模地实施。
在外太空中有超过21000个对象,并暴露于苛刻的空间环境中。空间对象的大小有很大变化。我们的研究集中于小型卫星,例如立方体,这些卫星必须尊重时间,空间和能量限制。为了解决此问题,本文介绍并评估了两个容忍在线调度算法算法:算法将所有任务安排为Aperiodic(称为OneOff),而将到达任务放置为Aperiodic或Quartiac ofic odic或周期性任务(称为Oneoff&Cyclic)。基于几种情况,结果表明,订购策略的性能受到系统负载的影响以及与要执行的所有任务的简单和双重任务的比例。“最早的截止日期”和“最早到达时间”为Oneoff的订购政策,或“最小懈怠”订购策略,用于单一和周期性,拒绝所有测试的场景中最小任务。本文还介绍了评估订购策略实时性能的计划时间的分析,并表明Oneoff比OneOff&Cyclic所需的时间更少。最后,发现所研究的算法在恶劣的环境中的性能也很好,并提供与基于三重模块化冗余的系统相同的可靠性水平,系统功耗较少。
- 先进的复合材料(ING-IND/22中的6.00 CFU),化学工程硕士学位课程(LM-22),民用和工业工程学院,罗马La Sapienza大学; - 航空材料(Ing-Ind/22中的6.00 CFU),航空工程硕士学位课程(LM-20),罗马La Sapienza大学民用与工业工程学院; - 生态设计中的物质选择(ING-IND/22中的6.00 CFU),可持续发展绿色工业工程硕士学位课程(LM-26),英语路径,民用和工业工程学院,罗马La Sapienza大学; - 材料的科学和技术(Ing-Ind/22中的3.00 CFU),可持续发展环境工程硕士学位(LM-35),罗马La Sapienza大学民用与工业工程学院; - 生物材料生物材料模块(ING-IND/22中的3.00 CFU),医学生物技术学位硕士(LM-53),罗马La Sapienza大学药学与医学学院的应用; - 意大利罗马La Sapienza大学电力工程,材料和纳米技术博士学位学院。
1 LATMOS,国家科学研究中心 (CNRS)、凡尔赛圣康坦伊夫林大学 (UVSQ)、巴黎萨克雷大学、索邦大学 (SU),11 Boulevard d'Alembert,78280 Guyancourt,法国; cannelle.clavier@latmos.ipsl.fr(抄送); alain.sarkissian@latmos.ipsl.fr(AS); alain.hauchecorne@latmos.ipsl.fr(AH); slimane.bekki@latmos.ipsl.fr (SB); franck.lefevre@latmos.ipsl.fr(佛罗里达州); patrick.galopeau@latmos.ipsl.fr(PG); pierre-richard.dahoo@latmos.ipsl.fr (P.-RD); andrea.pazmino@latmos.ipsl.fr(美联社) andre-jean.vieau@latmos.ipsl.fr(A.-JV); christophe.dufour@latmos.ipsl.fr (光盘); pierre.maso@uvsq.fr(下午); nicolas.caignard@latmos.ipsl.fr (北卡罗来纳州); frederic.ferreira@latmos.ipsl.fr(FF); pierre.gilbert@latmos.ipsl.fr(PG); catherine.billard@uvsq.fr(CB); philippe.keckhut@latmos.ipsl.fr (PK)2 ACRI-ST—CERGA,10 Avenue Nicolas Copernic,06130 Grasse,法国; oha@acri-st.fr(OHFd); sandrine.mathieu@acri-st.fr (SM); antoine.mangin@acri-st.fr (AM) * 通信地址:Mustapha.Meftah@latmos.ipsl.fr;电话:+33-1-8028-5179 † 这些作者对这项工作做出了同等贡献。
摘要 — CubeSat 平台由于成本低廉且发射相对容易,在空间科学应用中的应用越来越广泛。它正在成为低地球轨道 (LEO) 及更远轨道上的关键科学发现工具,包括地球同步赤道轨道 (GEO)、拉格朗日点、月球任务等。这些任务及其科学目标的复杂性日益增加,必须得到通信技术同等进步的支持。每年都需要更高的数据速率和更高的可靠性。然而,CubeSat 平台的尺寸、重量和功率 (SWaP) 约束的减小给卫星通信领域带来了独特的挑战。目前缺乏专门针对 CubeSat 平台的通信设备。缺乏标准化、经过测试的设备会延长开发时间并降低任务信心。此外,使用 CubeSat 平台的任务通常会受到更困难的设计约束。天线的位置、尺寸和指向通常服从于有效载荷仪器和任务目标的要求。传统的链路裕度估计技术在这些情况下是不够的,因为它们强调最坏的情况。实际上,即使在一次通过过程中,实际链路参数也可能有很大差异。这为预测通信性能和安排地面站联系带来了新的挑战,但也为提高效率带来了新的机会。本文介绍了与 Vulcan Wireless, Inc. 合作为 CubeSat 平台设计的新型软件定义无线电 (SDR) 的集成、测试和验证过程。SDR 计划用于 NASA 戈达德太空飞行中心 (GSFC) 即将进行的 5 项 CubeSat 任务,包括地球同步转移轨道 (GTO) 任务,它还可以作为未来任务的标准和经过充分测试的选项,实现标准化、快速和低成本的 CubeSat 通信系统网络集成过程。已经开发了详细的模拟来估计这些任务的通信性能,采用了独特的天线位置和姿态行为
美国军方继续鼓励对强大的卫星通信的需求,以便成功执行国防任务。立方体卫星是一种小型航天器,最初用于扩大航空航天和卫星通信领域的教育机会。这项研究探索了现有和潜在的地面站架构选项,以集成来自立方体卫星的自由空间光通信下行链路。未来的实验计划将侧重于在更多样化的环境中应用此功能,以包括扩展的地面架构机会。系统工程设计和架构方法有助于了解当前的硬件和软件选项以及未来扩展机会的限制。通过考虑可比较的规划方法,可以组织架构开发的替代方案,以帮助识别子系统和地面通信接口的控制因素。作为一个成熟的立方体卫星通信系统,现有的移动立方体卫星指挥和控制 (MC3) 架构是实验集成和最终考虑计划概念验证的绝佳候选者。