空间动力学实验室正在为 SmallSats 开发一种原型“绿色”混合原型推进系统。该系统基于犹他州立大学专利的高性能绿色混合推进 (HPGHP) 技术。HPGHP 利用 3D 打印丙烯腈丁二烯苯乙烯 (ABS) 独特的介电击穿特性,允许重新启动、停止和重新点火。HPGHP 使用气态氧 (GOX) 作为氧化剂时工作最可靠,但当用高测试过氧化氢 (HTP) 代替时,会出现点火可靠性和延迟问题。这一缺陷是由于 HTP 的高分解能垒造成的。测试表明,氧化铝上的铂等贵金属催化剂可有效分解 90% 的单推进剂形式的 HTP,但分解释放的能量不足以可靠地点燃混合火箭。本研究报告了一种用于混合火箭的非催化热点火方法。使用气态氧预引线引发燃烧,一旦发生完全 GOX 点火,HTP 就会被引入热燃烧室。GOX/ABS 燃烧产生的残余能量会热分解 HTP 流,而游离氧可实现完全 HTP 混合燃烧。本文介绍了使用 90% HTP 和丙烯腈丁二烯苯乙烯 (ABS) 和聚甲基丙烯酸甲酯 (PMMA) 作为燃料的 0.5、1.0 和 5 N 推力水平的原型系统的设计选项和测试结果。
Haris Riris 1,James B. Abshire 1,Michael Mumma 1,Geromino Villanueva 1,Thomas Hanisco 1,1 Grogdard太空飞行中心,8800 Greenebelt Rd。 简介:我们描述了一种效率和敏感方式来绘制行星气氛中痕量气体丰度的方法。 该方法使用一对在圆形极性轨道形成中飞行的小卫星。 每个卫星都带有几个可调的单频率二极管激光器和一个灵敏的光学检测器。 每个卫星的激光束都通过行星气氛的肢体指向,以照亮另一个卫星。 通过痕量吸收线调整二极管激光的波长,可以在另一个卫星接收器处测量的路径中的气体刺激。Haris Riris 1,James B. Abshire 1,Michael Mumma 1,Geromino Villanueva 1,Thomas Hanisco 1,1 Grogdard太空飞行中心,8800 Greenebelt Rd。简介:我们描述了一种效率和敏感方式来绘制行星气氛中痕量气体丰度的方法。该方法使用一对在圆形极性轨道形成中飞行的小卫星。每个卫星都带有几个可调的单频率二极管激光器和一个灵敏的光学检测器。每个卫星的激光束都通过行星气氛的肢体指向,以照亮另一个卫星。通过痕量吸收线调整二极管激光的波长,可以在另一个卫星接收器处测量的路径中的气体刺激。
1 热那亚大学电气、电子、电信工程和船舶建筑系,意大利热那亚 2 雅典国立技术大学电气与计算机工程学院,希腊雅典 3 意大利国家电信大学联盟 (CNIT) S3ITI 国家实验室,意大利热那亚
摘要 航天工业是当今主要的增长市场之一,也是创新、科学和技术非常有趣的商业领域。在上个世纪,航天工业发生了巨大的变化,经历了强大的商业化,被称为“新太空”。除了商业化之外,立方体卫星的概念在过去十年中也在市场上得到了很好的认可。欧洲航天局 (ESA) 已经认识到这一趋势,并将立方体卫星纳米卫星用于 OPS-SAT 任务等项目。OPS-SAT 使用最先进的嵌入式系统执行各种任务。这些嵌入式系统是 OPS-SAT 任务成功的关键,并为 OPS-SAT 飞行实验室进行的各种实验提供了出色的计算能力。本文介绍了这些嵌入式系统的基本设计,并讨论了 OPS-SAT 任务期间的一些相关成果。
当NASA的太空发射系统(SLS)火箭在2021年与Orion Crew车辆发射时,它将为NASA的目标奠定基础,即在Artemis计划的一部分中登陆第一位女士和下一个男人。第一次航班 - Artemis I-也将标志着Smallsats的里程碑。13个6u立方体显示在Artemis I飞行中,这是第一架立方体的舰队,作为乘车场的乘车机会。(NASA的第一个Cubesats到Deep Space,Twin Mars Cube One [Marco]航天器是Insight Mars Lander Mission不可或缺的一部分)。Artemis I Cubesat明确代表了各种各样的Smallsats,执行了一系列科学任务和技术演示。来自NASA,国际合作伙伴,学术界和行业的有效载荷将执行各种实验。几个小萨特人将执行以月球为重点的任务,这些任务可能会返回数据,以解决该机构的月球勘探计划中的战略知识差距(SKG)。的确,Artemis I Cubesats将在该机构21世纪Lunar计划的先锋队中。Artemis I任务将产生数据,以支持太空辐射意识,船员着陆和现场资源利用,有助于支持持续的人月球存在。几个Artemis I Cubesats正在展示新技术,包括推进功能。在Artemis I Cubesats中,是NASA的Cube Question挑战的三个,这是百年挑战计划的一部分。这三个任务将在达到特定技术发展目标的同时争夺奖金。日本和意大利太空机构的有效载荷为国际参与Artemis计划提供了早期机会。学生参与几乎一半的有效载荷允许STEM与NASA的Artemis计划互动。Artemis I Flight的SLS Block 1车辆由几个元素运送到肯尼迪航天中心(KSC),并准备堆叠和集成。该程序的新开发,即212英尺的核心阶段,其安装了四个RS-25发动机目前在Stennis Space Center(SSC)进行“绿色运行”测试。在绿色运行测试活动之后,舞台将运送到KSC,在那里它将与其余车辆集成,包括上层阶段适配器,其中Artemis I Smallsats将被容纳。
我要感谢 Stoll 教授对这项工作的二级指导以及过去的许多有趣的讨论。我还要感谢 Marco Villa、Eberhard Gill 教授、Jasper Bouwmeester、Bulent Altan 和 Michael Swartwout 教授:你们的建议和批判性问题对我帮助很大,改进了这项工作。我要向众多参与调查的人员和与我分享经验的 CubeSat 开发人员表示衷心的感谢,同时也感谢他们就 CubeSat 错误进行的始终非常公开的讨论。如果没有德国航空航天中心的支持,MOVE-II 和这项工作都不可能实现,在此我要特别感谢 Christian Nitzschke 先生。德国各地各个 CubeSat 项目的毕业生每天都在证明这里有多么出色的太空训练计划。
我要感谢 Stoll 教授对这项工作的第二次监督以及过去的许多有趣的对话。我还要感谢 Marco Villa、Eberhard Gill 教授、Jasper Bouwmeester、Bulent Altan 和 Michael Swarwout 教授:你们的建议以及你们的关键问题对我帮助很大,并改进了这项工作。非常感谢参与我的调查的众多参与者以及与我分享经验的许多 CubeSat 开发人员,并对有关 CubeSat 错误的始终非常开放的讨论表示赞赏。如果没有德国航空航天中心的支持,尤其要感谢 Christian Nitzschke 先生,MOVE-II 和这项工作都是不可能完成的。来自德国各地各个 CubeSat 项目的毕业生每天都在向人们展示这里存在着多么精彩的太空培训项目。
我要感谢斯托尔教授对这项工作的指导以及过去的许多有趣的讨论。我还要感谢 Marco Villa、Eberhard Gill 教授、Jasper Bouwmeester、Bulent Altan 和 Michael Swartwout 教授:你们的建议和批判性问题对我帮助很大,改进了这项工作。我调查中的众多参与者和与我分享经验的许多 CubeSat 开发人员都应该受到衷心的感谢,同时也感谢他们对 CubeSat 错误的公开讨论。如果没有德国航空航天中心的支持,MOVE-II 和这项工作都不可能实现,在此我要特别感谢 Christian Nitzschke 先生。德国各地各个CubeSat项目的毕业生每天都在证明这里有着多么美妙的太空训练计划。
我要感谢斯托尔教授对这项工作的指导以及过去的许多有趣的讨论。我还要感谢 Marco Villa、Eberhard Gill 教授、Jasper Bouwmeester、Bulent Altan 和 Michael Swartwout 教授:你们的建议和批判性问题对我帮助很大,改进了这项工作。我调查中的众多参与者和与我分享经验的许多 CubeSat 开发人员都应该受到衷心的感谢,同时也感谢他们对 CubeSat 错误的公开讨论。如果没有德国航空航天中心的支持,MOVE-II 和这项工作都不可能实现,在此我要特别感谢 Christian Nitzschke 先生。德国各地各个CubeSat项目的毕业生每天都在证明这里有着多么美妙的太空训练计划。
我要感谢斯托尔教授对这项工作的指导以及过去的许多有趣的讨论。我还要感谢 Marco Villa、Eberhard Gill 教授、Jasper Bouwmeester、Bulent Altan 和 Michael Swartwout 教授:你们的建议和批判性问题对我帮助很大,改进了这项工作。我调查中的众多参与者和与我分享经验的许多 CubeSat 开发人员都应该受到衷心的感谢,同时也感谢他们对 CubeSat 错误的公开讨论。如果没有德国航空航天中心的支持,MOVE-II 和这项工作都不可能实现,在此我要特别感谢 Christian Nitzschke 先生。德国各地各个CubeSat项目的毕业生每天都在证明这里有着多么美妙的太空训练计划。