“法律”是指“法律”是指签发,法律,法规,法规,法规,条例,法规,法规,政策,政策或规则或由任何政府权威签发,执行或执行的普通法,或任何司法或行政解释的任何司法或任何司法或行政解释,包括任何股票交易的规则,包括任何政府或任何政府的行政政府(A),或者是任何政府的行政规定(A)地方以及任何部门,部,机构,工具,法院,中央银行或其他机构,包括无限制的任何实体直接或间接拥有或控制; (b)任何公共国际组织或超国家机构(包括欧盟不限于欧盟)及其机构,部门,机构和工具; (c)任何准政府或私人机构或代理机构合法行使或有权进行任何行使,任何行政,执行,司法,立法,监管,许可,竞争,竞争,税收,税收或其他政府或其他政府或准政府机构。
“法律”是指“法律”是指签发,法律,法规,法规,法规,条例,法规,法规,政策,政策或规则或由任何政府权威签发,执行或执行的普通法,或任何司法或行政解释的任何司法或任何司法或行政解释,包括任何股票交易的规则,包括任何政府或任何政府的行政政府(A),或者是任何政府的行政规定(A)地方以及任何部门,部,机构,工具,法院,中央银行或其他机构,包括无限制的任何实体直接或间接拥有或控制; (b)任何公共国际组织或超国家机构(包括欧盟不限于欧盟)及其机构,部门,机构和工具; (c)任何准政府或私人机构或代理机构合法行使或有权进行任何行使,任何行政,执行,司法,立法,监管,许可,竞争,竞争,税收,税收或其他政府或其他政府或准政府机构。
固体液体(S-L)界面都在许多工程应用中发现,例如润滑和涂料系统以及热界面材料。了解(S-L)之间的相互作用对于优化各种工程应用至关重要。这项研究的主要目的是使用非平衡分子动力学模拟提供有关液体表面上液体吸附的见解。为了实现这一目标,将建模固定表面之间的液体,以使用恒定温度作为基线匹配接触界面的真实状态。结果突出了液体吸附层的峰高值,密度曲线和回旋半径之间的显着关系。具体而言,晶体平面(110)的S-L接口处的峰高密度为784.756 kg/m 3,其次是801.786 kg/m 3的(100),最后最高的是晶体平面(111),在966.940 kg/m 3。虽然晶体平面(100)和(111)在S -L界面处的回旋半径约为7.45×10 -21 m 2,但对于晶体平面(110),它的尺寸较小,尺寸约为7.06×10 -21 m 2。结论,固体界面附近的固体密度的吸附层受固体密度的峰值高度显着影响。较高的密度导致固体液体界面附近的液体吸附层更高。固体密度层的数量不会影响液体吸附层的高度。
在室温和近型压力下的超导性是物理和材料科学中极为受欢迎的现象。A recent study reported the presence of this phenomenon in N-doped lutetium hydride [ Nature 615, 244 (2023)], however, subsequent experimental and theoretical investigations have yielded inconsistent results.This study undertakes a systematic examination of synthesis methods involving high temperatures and pressures, leading to insights into the impact of the reaction path on the products and the construction of a phase diagram for lutetium hydrides.Notably, the high-pressure phase of face-centered cubic LuH 3 (fcc-LuH 3 ) is maintained to ambient conditions through a high-temperature and high-pressure method.Based on temperature and anharmonic effects corrections, the lattice dynamic calculations demonstrate the stability of fcc-LuH 3 at ambient conditions.然而,在环境压力下,在FCC-LUH 3中,在2 K和磁化测量中未观察到超导性。This work establishes a comprehensive synthesis approach for lutetium hydrides, thereby enhancing the understanding of the high-temperature and high-pressure method employed in hydrides with superconductivity deeply.
当定制至关重要时,光学参考腔 (ORC) 系列就是我们的解决方案。您可以从出色的适配、辅助仪器和服务组合中进行选择,并从我们设计多代超稳定激光系统的经验中获益。ORC 系列是法布里-珀罗型腔,其谐振腔垫片由超低膨胀玻璃 (ULE) 制成。腔体安装在密封真空外壳中,具有出色的温度稳定性,可实现低频率漂移。紧凑的设计确保最小的空间需求。ORC-Cubic 可作为 6U、19 英寸机架模块使用。它基于国家物理实验室授权的刚性安装的立方体垫片。ORC-Cylindric 使用由德国联邦物理技术研究院设计的圆柱形垫片,水平安装在四个支撑点上。在这里,机械锁定机制确保了便携性。有各种附加组件和选项可供定制:镜面基底有 ULE 或熔融石英 (FS) 两种,镜面涂层可以是离子束溅射 (IBS) 或晶体 (XTAL),当低热噪声至关重要时,需要后者。高反射涂层适用于很宽的波长范围,也可作为双重或三重高反射镜。输入耦合、PDH 锁定和输出监控模块可以牢固地安装到腔体上,从而省去了运输后的繁琐重新调整。每个系统都在组装过程中经过烘烤。内置的 NTC 和 Peltier 元件可通过真空馈通装置接触,从而允许在热膨胀系数 (CTE) 的零交叉处工作。可根据要求提供 CTE 特性。两种腔体也可不带外壳。
摘要在这项工作中,已经报道了与水热法有关的koh-naOH的立方样comn 2 o 4均匀纳米结构的合成。通过X射线衍射(XRD),田间发射扫描电子显微镜(FE-SEM),高分辨率透射透射电子显微镜(HR-TEM)分析研究了Comn 2 O 4的晶体结构相纯度和形态。Comn 2 O 4的电化学材料已经检查了超级电容器的电活性材料。电子差异具有出色的电化学特性。具有足够自由空间的立方样形态结构有益于改善电化学性能。COMN 2 O 4电极表现出最高特异性电容值762.4 F G -1的法拉达电容,扫描速率为5 mV s -1。发现Comn 2 O 4电极的库仑效率在2000年充电循环后为91.2%。COMN 2 O 4的纳米结构对制备电极的出色电化学性能产生了明显的贡献。
图 2. 示意图,说明评估长程屏蔽能量对带电缺陷的 DFT 超胞计算的贡献。 (a) 带电荷 q 的体缺陷具有无限延伸的电介质屏蔽,内接正方形表示计算超胞的范围。 (b) DFT 超胞将整个净电荷 q 限制在超胞平行六面体内,通过从超胞边缘抽取电子来屏蔽近缺陷区域,从而对边缘区域进行去屏蔽。 (c) 等效体积球体,半径为 R vol ,需要围绕该球体评估长程屏蔽能量。 (d) 该半径减少了 R skin 以解释未屏蔽的晶胞体积,从而得到了由 R Jost 定义的 Jost 经典电介质屏蔽。
功能性磁共振成像(fMRI)是一种至关重要的技术,可以洞悉人类认知过程。从fMRI测量中积累的数据会导致体积数据集随时间变化。但是,分析此类数据的挑战是由于大脑中信息的表示方式的噪音和人与人之间的变化。为了应对这一挑战,我们提出了一种新颖的拓扑方法,该方法在fMRI数据集中编码每个时间点,作为拓扑特征的持久图,即数据中存在的高维空隙。 此表示自然不依赖于voxel-voxel对应关系,并且对噪声是可靠的。 我们表明,可以将这些随时间变化的持久图聚类以发现参与者之间有意义的分组,并且它们在研究执行特定任务的受试者的受试者内部脑状态轨迹也很有用。 Here, we apply both clustering and tra- jectory analysis techniques to a group of participants watching the movie ‘Partly Cloudy'. 我们观察到大脑状态轨迹以及观看同一电影的成人和儿童之间的整体拓扑活动的显着差异。数据中存在的高维空隙。此表示自然不依赖于voxel-voxel对应关系,并且对噪声是可靠的。我们表明,可以将这些随时间变化的持久图聚类以发现参与者之间有意义的分组,并且它们在研究执行特定任务的受试者的受试者内部脑状态轨迹也很有用。Here, we apply both clustering and tra- jectory analysis techniques to a group of participants watching the movie ‘Partly Cloudy'.我们观察到大脑状态轨迹以及观看同一电影的成人和儿童之间的整体拓扑活动的显着差异。
这是以下文章的已接受版本:Harikesh, P. C., Surendran, A., Ghosh, B., John, R. A., Moorthy, A., Yantara, N., . . . Mathews, N. (2020). Cubic NaSbS2 as an ionic‑electroniccoupled semiconductor for switchable photovoltaic and neuromorphic device applications. Advanced Materials, 32(7), 1906976‑,最终版本已发布于 https://doi.org/10.1002/adma.201906976。本文可根据 Wiley 自存档政策 [https://authorservices.wiley.com/authorresources/Journal‑Authors/licensing/self‑archiving.html] 用于非商业用途。
完整作者列表: 姜静;电子科技大学;休斯顿大学 朱航天;休斯顿大学 牛毅;电子科技大学 朱青;休斯顿大学 宋少伟;休斯顿大学 周婷;电子科技大学;休斯顿大学 王超;电子科技大学 任志锋;休斯顿大学