本文是两者中的第一个,它提出了16年的主题解决方案,该解决方案是沿美国西部14海岸的加利福尼亚电流系统(CCS)的耦合物理学和生物地球化学模型,并验证有关平均,季节性,年间和15个季节性的季节性季节性季节性和较低度的物理解决方案。其伴侣论文是Deutsch等。16(2021a)。目的是构建和演示一种建模工具,该工具将用于17种机械解释,归属因果评估以及对18个循环和生物地球化学的未来进化的预测,并特别关注增加的海洋层构型 - 19 tion,脱氧,脱氧和酸性。CCS循环的良好解决的中尺度(DX = 4 km)模拟20是在1995年至2010年的16年后的21个时期的区域海洋建模系统中进行的。海洋解决方案由高分辨率22(DX = 6 km)的区域配置强迫天气和研究预测(WRF)大气23模型。这两个高分辨率的区域海洋和大气模拟都被横向开放的边界条件迫使24,从较大的域,更粗的父母仿真 - 25本身具有来自Mercator和气候预测的边界条件26 System System Reanalyses。我们在模拟的大气27强迫海洋和卫星测量的空间模式的强迫和暂时变化的强迫之间表现出了良好的一致性。然后用卫星和原位测量对模拟的海洋物理29领域进行评估。模拟再现30个气候上升前和跨近岸的等值斜率,31个平均电流模式(包括加利福尼亚潜流)以及季节性,年际,32和亚季节变异性的主要结构。它还显示了中尺度涡流活性与33海洋和大气之间的风能交换之间的一致性。最后,使用高频风强迫35的影响评估了天气风变异性对现实代表海洋36中尺度活动和年龄型惯性电流的重要性。37
DRP1或与动力蛋白相关的蛋白1,是控制线粒体动力学的关键蛋白质。它在细胞中自然丰富,并且在线粒体分为较小的大小中起着至关重要的作用。当DRP1活性过多时,它可能导致术语碎片的线粒体碎裂的功能受损。这种分散性会导致神经元功能障碍和细胞死亡,这是帕金森氏症等神经退行性疾病的标志。线粒体动力学的失衡与帕金森氏症等神经退行性疾病有关。帕金森氏病是一种神经退行性疾病,在全球范围内影响约100万美国人和超过1000万人。这是控制运动的垂死的脑细胞的结果。某些与疾病相关的因素破坏了线粒体融合和分裂的和谐。要了解有关帕金森氏病的更多信息,请单击此处。
细胞分为小细胞和大细胞亚型,NECS大多数分解inthelungcomprisisingApproxproistrosapproxapproxapproxapproxaplroxaplroxaplroxaplroxaplroxaplroxallsmall细胞癌。2,3肺外NEC(EPNEC)可能在欧洲每年每年1.00 000居民每年据报道,在欧洲据报道,在欧洲,可能会出现。4 EPNEC的稀有性以及与更常见的原发性小细胞肺癌(SCLC)的相似性,导致从业人员在EPNEC的治疗中采用相似的原则。最近,已经发布了神经内分泌分化的muchnewineformation umorogensodensisandisheatio-逻辑因子,表明不同起源的EPNEC的生物学相似性。5-8 The The The The TheSightsmayhelppractitioners Epnecs患者的Explorenewter-trestrentertrentertrenting。此外,随着免疫检查点抑制剂(ICIS)的结合,SCLC的治疗景观正在发生变化。9最后,更多的回顾性系列是报告comoreTraditionAlterTeatmentsTrategies,例如
摘要背景:胃癌是全球癌症死亡的主要原因。已经研究了几种治疗可能性,但只有少数显示出临床意义的结果。摘要:近年来,晚期胃癌(AGC)的全身治疗方案已进化,增强了这种疾病的分子知识的日益增长。分子分析(至少对于HER-2-表达,微卫星不稳定性状况,Epstein-Barr Vi-Rus表达和编程的死亡配体表达/组合阳性评分[CPS])是在系统治疗之前的所有Ther-APY-FIT患者的,并且是针对治疗策略和药物的决策。各种示例,例如在HER-2阳性亚组中应用曲妥珠单抗从一线设置开始的这种方法的好处。铂和氟嘧啶的结合仍然是治疗晚期胃癌的一线Che-Marteabonebone。三胞胎组合添加紫杉虫的双重组合
查询:如果您对此文档有疑问,请联系openresearch@mmu.ac.uk。请在e空间中删除记录的URL。如果您相信您或第三方的权利已通过本文档妥协,请参阅我们的取消政策(可从https://www.mmu.ac.uk/library/library/using-library/using-library/using-library/polary/policies-and-guidelines)
摘要 - 递增能力分析(ICA)和不同的电压分析(DVA)通常需要电池降解监控的恒定当前条件,这限制了它们在现实情况下的适用性。本文提出了一种统一的方法,可以在一般充电当前概况下启用基于ICA/DVA的降解监测,这在文献中尚未解决。首先,提出了一种新颖的虚拟增量能力(IC)和不同电压(DV)的概念。第二,两个相关的卷积神经网络(CNN),称为U-NET和CONC-NET,是为了构建虚拟IC/DV曲线的构建,并估算了跨任何状态(SOC)范围内的一般充电概况的健康状况(SOH),以满足某些约束。最后,提出了两个称为移动U-NET和移动网络的CNN,分别替换了U-NET和Conv-NET以进行车载实现。它们会大大减少计算和内存需求,同时在虚拟IC/DV曲线构建和SOH估计中保留性能。在具有各种快速充电协议和SOC范围的电池模块的广泛实验数据集上进行了测试,拟议的U-NET和移动U-NET构造精确的虚拟IC/DV曲线可以提取有价值的降级功能。建议的Conv-NET和移动网络提供的模块级SOH估计值,根平方误差(RMSE)小于0.5%。关键字 - 增量容量分析;差分伏分析;非恒定电流充电;快速充电;卷积神经网络;健康状况估计
摘要:纳米颗粒形成的合成方法产生了异质种群的纳米颗粒,在研究反应性时,可以研究单纳米颗粒的化学植物学特性的技术。虽然单一实体电化学实验已被充分记录在包括球形金属纳米颗粒,乳液液滴和细胞在内的对称对象的,但由于碰撞过程中物体方向的自由度增强,因此不对称物体为额外的挑战提供了额外的挑战。最近,由于高电荷密度能力,机械稳定性和生物相容性的结合,石墨烯已成为一种突出的电极材料,其应用范围从体内感应到工业能量转换反应。石墨烯纳米片(GNP)是一种准二维导电纳米材料,其在微米尺度上具有两个尺寸,而在纳米尺度上有一个,在功能上充当平面材料。在与铁甲醇(外球氧化还原介体)存在下与电极表面碰撞后,观察到广泛的电流响应,这些反应被观察到对称对象的广泛电流响应。在这里,我们介绍了相关的电化学和光学显微镜,以同时在单个实体级别探测化学和空间信息,以完全了解石墨烯纳米片的纳米级的碰撞动力学。此外,这种相关的技术允许对复杂电流响应的反卷积,从而揭示了数十秒范围内耦合的瞬态事件。从这些测量值中,稳态电流的变化用于氧化亚甲醇的氧化可能与GNP碰撞时电极表面积的变化直接相关,从而深入了解了单一实体的几何形状|没有两种组合技术的电极界面,否则将无法访问。
✔降低维护需求 - 与天然草不同,无需进行持续的灌溉,重新灌输或所需的充气。 ✔水有效 - 比天然田地需要更少的水。 ✔扩展可用性 - 可以在所有季节中使用,以支持多种运动。 ✔耐用性 - 大量使用没有土壤压实。 ✔抗气 - 可以在降雨后不久进行。✔降低维护需求 - 与天然草不同,无需进行持续的灌溉,重新灌输或所需的充气。✔水有效 - 比天然田地需要更少的水。✔扩展可用性 - 可以在所有季节中使用,以支持多种运动。✔耐用性 - 大量使用没有土壤压实。✔抗气 - 可以在降雨后不久进行。
我们很高兴邀请您为特殊问题做出贡献:“纳米元素技术和纳米医学的最新进展”。本期特刊旨在强调纳米技术在分子生物学和医学领域的应用。纳米技术涉及纳米载体中合成,自然和生物技术药物的包封,以促进癌症治疗,传染病,免疫疾病,组织再生和抗疫苗抗性的治疗作用。研究领域包括以下内容: - 靶向药物输送的功能化纳米载体。- 增强各种组织的生物利用度。- 纳米颗粒,脂质体和其他
通过非共价相互作用的肽的自组装导致具有功能特性的分层有序结构。正如Bert Meijer教授解释的那样,分子的功能在其分子环境中出现,类似于其靶位部位的药物。 除了合成之外,非共价系统设计对于功能至关重要。 基于肽的系统具有高生物相容性,细胞渗透性和低免疫原性,使其成为理想的生物材料。 刺激反应性的自组装,由溶剂,温度,pH,酶或氧化还原梯度触发,可以释放受控药物,从而降低脱靶效应并提高治疗功效。 这些进步对癌症治疗,神经退行性疾病,再生医学和传染病有希望。 我们邀请研究人员提交有关肽和分子结合物的发现,以发现生物标志物发现,靶向药物输送和治疗监测。正如Bert Meijer教授解释的那样,分子的功能在其分子环境中出现,类似于其靶位部位的药物。除了合成之外,非共价系统设计对于功能至关重要。基于肽的系统具有高生物相容性,细胞渗透性和低免疫原性,使其成为理想的生物材料。刺激反应性的自组装,由溶剂,温度,pH,酶或氧化还原梯度触发,可以释放受控药物,从而降低脱靶效应并提高治疗功效。这些进步对癌症治疗,神经退行性疾病,再生医学和传染病有希望。我们邀请研究人员提交有关肽和分子结合物的发现,以发现生物标志物发现,靶向药物输送和治疗监测。