Turner 等人的欧拉曲线变换 (ECT) 是嵌入单纯复形的完全不变量,易于进行统计分析。我们对 ECT 进行了推广,以提供同样方便的表示形式,用于加权单纯复形,例如在某些医学成像应用中自然出现的对象。我们利用 Ghrist 等人关于欧拉积分的工作来证明这个不变量——称为加权欧拉曲线变换 (WECT)——也是完整的。我们解释了如何将灰度图像中分割的感兴趣区域转换为加权单纯复形,然后转换为 WECT 表示。该 WECT 表示用于研究多形性胶质母细胞瘤脑肿瘤形状和纹理数据。我们表明,WECT 表示可根据定性形状和纹理特征有效地对肿瘤进行聚类,并且这种聚类与患者生存时间相关。
摘要:神经调节的领域缺乏影响可塑性个体差异的预测指标,这些差异会影响对重复的经颅磁刺激(RTMS)的反应。连续的theta爆发刺激(CTB)是一种以其抑制作用而闻名的RTM的形式,显示了个体之间的可变反应,这可能是由于神经可塑性的差异所致。预测单个CTBS效应可以极大地增强其临床和实验效用。本研究探讨了在神经调节之前测量的电动机诱发电位(MEP)输入输出(IO)参数是否可以预测运动皮层对CTB的反应。IO曲线是通过记录在一系列单脉冲TMS强度上的MEP来从健康成年人中取样的,以获得包括MEP Max和S 50(中点强度)在内的参数。后来比较了刺激前后的Moto Cortex及其MEP的相同位置的CTB。MEP Max和S 50都预测了响应,与CTB后10、20和30分钟的个人MEP变化显着相关(P <0.05,R 2> 0.25)。此外,我们介绍并验证了一种易于实现的生物标志物,该标志物不需要全IO曲线的耗时抽样:MEP 130RMT(中位数为10 MEP,在130%RMT)。MEP 130RMT也是CTBS响应的强有力预测指标(P <0.005,r 2> 0.3)。与先前研究的RTMS响应(BDNF多态性)的遗传生物标志物的头对头比较表明,基于IO的预测因子在解释更多响应变异性方面具有出色的性能。关键字:输入输出曲线,CTB,预测变量因此,在CTBS给药之前得出的IO曲线可以可靠地预测CTB诱导的皮质兴奋性变化。这项工作指向RTMS诊断和治疗应用中调整刺激程序的无障碍策略,并可能提高对其他大脑刺激方法的反应率。
椭圆曲线密码学(ECC)由于其效率和高安全性水平,即使钥匙较小,因此已经成为现代密码学的强大工具。引入蒙哥马利阶梯算法,通过提供一种安全标量乘法的方法来抵抗侧向通道攻击,这是加密实现中常见的漏洞,从而进一步提高了ECC的安全性和效率。本文表明,蒙哥马利阶梯算法为需要高安全性的应用提供了一个强大的解决方案,尤其是在抵抗侧向通道攻击的环境中。通过比较分析,很明显,蒙哥马利阶梯算法虽然更复杂,但在安全的加密操作方面具有很大的优势,这使其成为基于ECC的系统发展的关键组成部分。
本文提出了一种解决能源圈内通常称为鸭曲线问题的电力负荷分配问题的新方法。鸭曲线问题是一条曲线,显示公用事业公司为其消费者提供的总电力负荷(来自火力发电厂的能源)与风能和太阳能发电(或本地发电)满足部分负荷(可再生资源或绿色能源)后的负荷之间的差异。这种方法基于无监督学习长短期记忆(LSTM)和注意力机制,旨在对鸭曲线预测做出清晰的解释,并了解这种差异的明确原因,从而帮助决策者更好地解释曲线并有效地解决问题。信息和通信技术(ICT)和物联网(IoT)对于绿色能源的部署是必不可少的。因此,可以利用不同传感器的数据作为支撑,验证本地生产层面的信息,以有效、有针对性的方式解决“鸭子曲线”问题。
摘要。本文改进了 Shor 攻击二元椭圆曲线所需的量子电路。我们提出了两种类型的量子点加法,同时考虑了量子比特数和电路深度。总之,我们提出了一种就地点加法,改进了 Banegas 等人在 CHES'21 中的工作,根据变体的不同,将量子比特数 - 深度乘积减少了 73% - 81% 以上。此外,我们通过使用额外的量子比特开发了一种非就地点加法。该方法实现了最低的电路深度,并将量子比特数 - 量子深度乘积提高了 92% 以上(单个步骤)。据我们所知,我们的工作在电路深度和量子比特数 - 深度乘积方面比所有以前的工作(包括 Banegas 等人的 CHES'21 论文、Putranto 等人的 IEEE Access'22 论文以及 Taguchi 和 Takayasu 的 CT-RSA'23 论文)都有所改进。结合实现,我们讨论了二元椭圆曲线密码的后量子安全性。在美国政府的 NIST 提出的 MAXDEPTH 度量下,我们工作中深度最大的量子电路为 2 24 ,明显低于 MAXDEPTH 极限 2 40 。对于门数 - 全深度乘积(一种估计量子攻击成本的度量,由 NIST 提出),我们工作中度为 571 的曲线的最高复杂度为 2 60(在经典安全性方面与 AES-256 相当),明显低于后量子安全 1 级阈值(2 156 量级)。
摘要。这项工作介绍了几种与超椭圆形曲线内态环中的方向相关的算法。这个问题归结为通过三元二次形式代表整数,这是关于基于亚速基因的密码学中定向曲线安全的几个结果的核心。我们的主要贡献是表明存在有效的算法,这些算法可以解决该问题的二次判别n,直到O(p 4 /3)。我们的方法通过将其从O(P)增加到O(P 4 /3)并消除一些启发式方法来改善先前的结果。我们介绍了新算法的几种变体,并对它们的渐近运行时间进行了仔细的分析(在可能的情况下没有启发式)。我们一种变体之一的最佳证明的渐近复杂性平均是O(n 3 /4 / p)。最好的启发式变体对于足够大的n具有O(p 1/3)的复杂性(p 1/3)。然后,我们介绍了有关在方向订单之间的理想计算的几个结果。第一个应用是简化从矢量化到计算内态态环的已知还原,从而消除了对判别物分解的假设。作为第二个应用,我们将计算固定级别的等级曲线之间的计算问题与内态曲线中的计算计算问题之间的问题联系起来,并且我们表明,对于D度D度,我们的新算法在很大程度上,我们的新算法会改善整个问题的范围,并且在重要的特殊案例中,并且在Polynomial dimial dimial alg aS and and and and and and and and and and and and and and and and and and and and and and and and and and and and nismial alg alg nomial alg nomial alg nomial alg nomial alg nomial alg。在最特殊的情况下,当这两种曲线都以小度的内态性为导向时,我们从启发式上表明我们的技术允许计算任何程度的同基因,假设它们存在。
a 美国伊利诺伊州莱蒙特阿贡国家实验室 b 美国马萨诸塞州剑桥麻省理工学院信息与决策系统实验室 c 美国密歇根州安娜堡密歇根大学电气工程与计算机科学系 d 美国宾夕法尼亚州伯利恒利哈伊大学经济学系和工业与系统工程系 e 美国马萨诸塞州剑桥麻省理工学院信息与决策系统实验室
本文比较了钟形曲线方法和替代性能评估方法。Bell曲线方法在组织中广泛用于估计员工绩效。但是,它是为了创造不利的工作环境和相对于多元化反馈和目标设定而灰心的工作环境,这被认为是对评估员工绩效的更有效和无偏见的方法。本研究使用回归分析研究了不同绩效评估方法与员工结果之间的关联。通过调查,访谈和档案绩效数据收集数据。结果揭示了钟形曲线方法对员工的敬业度和工作绩效产生负面影响,而多源反馈和目标设定方法在创建有利的工作环境时更为实际。定量分析表明,钟形曲线方法与这些结果负相关,而多源反馈和目标设定则呈正相关。调查结果建议组织应重新审查铃曲线方法的使用,并重新调用以员工为中心的方法。多源反馈和目标设定是可以创造公正的工作环境,支持员工发展并推动积极组织成果的潜在替代方案。通过实施替代性能评估方法,组织可以解决劳动力的潜力,并促进一种文化,从而赋予员工繁荣发展。
,但是要提高新高点的麻烦是,它使与AI相关的股票更容易受到情感转变的影响,也就是说,由于中国公司DeepSeek推出了自己的LLM(R1),这可能是刚刚发生的事情。据称它几乎与美国领先公司建立的模型一样有效(以及一些我们看到的报道证实了这一主张),但真正的惊喜是,他们也声称在创建它上只花了560万美元(与美国大公司所花费的数十亿美元相反)。其他研究表明,这个数字有些不明显,因为它未能纳入“模型背后的模型”的成本。R1通过使用其他LLM的数据在某种程度上训练自己。毫无疑问,通过合并一种称为“专家混合物”的过程,它能够将学习分解为咬合大小的块,从而减少所需的能量。
致谢 我们感谢美国国家可再生能源实验室 (NREL) 的 Katy Schneider、Brian Sergi、Galen Maclaurin、Whitney Trainor-Guitton 和 Dan Bilello 以及美国能源部的 Patrick Gilman 和 Gage Reber 对本报告内容提供的反馈。我们还要感谢 Jenny Korte 的编辑工作。这项工作由美国国家可再生能源实验室的研究人员完成,该实验室由可持续能源联盟有限责任公司运营,受美国能源部委托,合同编号为 DE-AC36-08GO28308。美国能源部能源效率和可再生能源办公室 (EERE) 太阳能技术办公室(奖项编号 38421)、风能技术办公室和地热技术办公室根据合同编号 DE-EE0009962 提供资金。本文表达的观点不一定代表美国能源部或美国政府的观点。所有错误和遗漏均由作者独自承担。