Adamson, PT、Rutherfurd, ID、Peel, MC、Conlan, IA,2009 年。湄公河的水文学。引自:Cambell, I.(编辑),湄公河:国际河流流域的生物物理环境,第一版。Elsevier,第 53 – 76 页。Alcayaga, H.、Belleudy, P.、Jourdain, C.,2012 年。流域尺度上水电结构对河流扰动的形态学建模。引自:Mu ˜ noz, RM(编辑),河流流量 2012。河流水力学国际会议,第 537 – 544 页。 Arias, ME、Cochrane, TA、Kummu, M.、Lauri, H.、Holtgrieve, GW、Koponen, J.、Piman, T.,2014。水电和气候变化对东南亚最重要湿地生态生产力驱动因素的影响。生态模型 272,252 – 263。Ashouri, H.、Hsu, K.、Sorooshian, S.、Braithwaite, DK、Knapp, KR、Cecil, LD、Nelson, BR、Prat, OP,2015。PERSIANN-CDR:来自多卫星观测的每日降水气候数据记录,用于水文和气候研究。美国流星学会通报 96(1),69 – 83。 Ayugi, B., Tan, G., Gnitou, GT, Ojara, M., Ongoma, V., 2020. 罗斯贝中心区域气候模型对东非降水的历史评估和模拟。大气研究 232, 104705 。Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., Zhang, A., 2012. 中国北方海河流域径流量减少的归因:气候变化还是人类活动?水文地质学杂志 460 – 461, 117 – 129 。Bartkes, M., Brunner, G., Fleming, M., Faber, B., Slaughter, J., 2016. HEC-SSP 统计软件包用户手册 2.1 版。美国陆军工程兵团。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2018a。澜沧江梯级大坝对越南湄公河三角洲流态的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (4), 487 – 492。Binh, DV、Kantoush, S.、Mai, NP、Sumi, T.,2018b。越南湄公河三角洲在增加管制流量和河流退化的情况下的水位变化。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 871 – 876。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2019。湄公河流域的长期排放、水位、盐度浓度和降水。 Mendeley Data V3 。Binh, DV、Kantoush, S.、Sumi, T.,2020. 上游水坝导致越南湄公河三角洲长期排放和沉积物负荷的变化。地貌学 353,107011。Cook, BI、Bell, AR、Anchukaitis, KJ、Buckley, BM,2012。积雪和降水对湄公河下游流域旱季径流的影响。地球物理研究杂志 117,D16116。Dang, TD、Cochrane, TA、Arias, ME、Van, PDT、Vries, TTD,2016。湄公河洪泛区水利基础设施建设带来的水文变化。水文过程 30,3824 – 3838。 Darby, SE、Hackney, CR、Leyland, J.、Kummu, M.、Lauri, H.、Parsons, DR、Best, JL、Nicholas, AP、Aalto, R.,2016 年。热带气旋活动变化导致巨型三角洲河流沉积物供应减少。《自然》276 – 279。Eslami, S.,Hoekstra, P., Trung, NN, Kantoush, SA, Binh, DV, Dung, DD, Quang, TT, Vegt, MVD,2019。人为沉积物匮乏导致湄公河三角洲的潮汐放大和盐入侵。Sci. Rep. 9,18746。Fan, H., He, D., Wang, H.,2015。筑坝澜沧江-湄公河主流的环境后果:综述。Earth-Sci. Rev. 146,77 – 91。Ha, TP, Dieperink, C., Tri, VPD, Otter, HS, Hoekstra, P.,2018a。越南湄公河三角洲适应性淡水管理的治理条件。J. Hydrol. 557,116 – 127。 Ha, DT、Ouillon, S.、Vinh, GV,2018b。根据高频测量(2009 – 2016 年)得出的湄公河下游水和悬浮沉积物预算。水 10, 846 。Harris, I.、Osborn, TJ、Jones, P.、Lister, D.,2020。CRU TS 月度高分辨率网格化多元气候数据集第 4 版。科学数据。https://doi.org/10.1038/s41597-020-0453-3)。Hecht, JS、Lacombe, G.、Arias, ME、Dang, TD,2019。湄公河流域的水电大坝:其水文影响回顾。水文杂志 568, 285 – 300 。 Hoang, L.、Ngoc, TA、Maskey, S.,2016。一种用于估算越南湄公河三角洲 CERES-rice 模型参数的稳健参数方法。大田作物研究。196,98 – 111。Hoanh, CT、Jirayoot, K.、Lacomne, G.、Srunetr, V.,2010。气候变化和发展对湄公河流量制度的影响:首次评估 – 2009 年。MRC 技术论文第 29 号。湄公河委员会,老挝万象。Jordan, C.、Tiede, J.、Lojek, O.、Visscher, J.、Apel, H.、Nguyen, HQ、Quang, CNX、Schlurmann, T.,2019。重新审视湄公河三角洲的采砂 – 目前当地沉积物短缺的规模。 Rep. 9,17823 。 Kantoush, S.、Binh, DV、Sumi, T.、Trung, LV,2017。上游水电站大坝和气候变化对越南湄公河三角洲水动力学的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 73 (4),109 – 114 。Kendall, AMG,1938。一种新的秩相关性测量方法。Oxford J. 30,81 – 93 。Kiem, AS、Ishidaira, H.、Hapuarachchi, DP、Zhou, MC、Hirabayahi, Y.、Takeuchi, K.,2008。使用高分辨率日本气象局 (JMA) AGCM 模拟湄公河流域未来水文气候学。水文过程。22,1382 – 1394 。 Kingston, DG、Thompson, JR、Kite, G.,2010。湄公河流域气候变化预测排放量的不确定性。水文地球系统科学讨论。7,5991 – 6024。Kondolf, GM、Rubin, ZK、Minear, JT,2014。湄公河上的水坝:累积沉积物匮乏。水资源研究。50,5158 – 5169。 Kondolf, GM, Schmitt, RJP, Carling, P., Darby, S., Arias, M., Bizzi, S., Castelletti, A., Cochrane, TA, Gibson, S., Kummu, M., Oeurng, C., Rubin, Z., Wild, T., 2018. 湄公河沉积物预算的变化:大型河流流域的累积威胁和管理策略。环境科学总论 625, 114 – 134 。Kummu, M., Lu, XX, Wang, JJ, Varis, O., 2010.湄公河沿岸新兴水库的全流域泥沙截留效率。地貌学 119,181 – 197 。 Lauri, H.,De Moel, H.,Ward, PJ,R ¨ as ¨ anen, TA,Keskinen, M.,Kummu, M.,2012。湄公河水文未来变化:气候变化和水库运行对流量的影响。水文地球系统科学 16,4603 – 4619 。 Li, D.,Long, D.,Zhao, J.,Lu, H.,Hong, Y.,2017。湄公河流域观测到的流动状态变化。水文杂志 551,217 – 232 。 Lu, XX,Siew, RY,2006。过去几十年来湄公河下游的水流量和泥沙通量变化:中国大坝的可能影响。 Hydrol. Earth Syst. Sci. 10, 181 – 195 。 Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流变化观测结果:中国水坝的影响? Quat. Int. 336, 145 – 157 。 Mai, NP, Kantoush, S., Sumi, T., Thang, TD, Trung, LV, Binh, DV, 2018. 评估和适应水坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378 。 Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。
概述 为儿童、青少年和家庭带来积极成果是社区和政府共同的责任。公共儿童福利工作复杂而多面,需要任何单一机构无法提供的资源和专业技能来满足儿童、青少年和家庭的所有需求。为此,战略伙伴关系可以加强和巩固公共儿童福利机构的工作。本指南将介绍机构应如何战略性地建立或改变系统以满足儿童、青少年和家庭的需求并带来积极成果。它描述了合作伙伴应开展哪些工作来维持、加强和不断改善他们的关系。本指南将回答的问题 • 为什么战略伙伴关系很重要,它们如何直接影响儿童、青少年和家庭的成果? • 发展有效伙伴关系的战略工作是什么? • 可以考虑的伙伴关系的哪些方面? • 关键流程是什么,它们如何支持和加强有效的伙伴关系? • 儿童福利领导层和工作人员在发展和维持有效伙伴关系方面的作用、职责和能力是什么? • 机构在解决服务差异问题时需要考虑什么?为什么这一关键领域对公共儿童福利领域如此重要? • 合作不仅符合公共儿童福利的最大利益,而且符合儿童、青年和家庭以及所有人类服务计划和机构的最大利益。 • 系统内外都普遍认识到,通过联合努力、共享资源和为共同利益而努力,合作的实体可以为儿童、青年和家庭取得比每个合作伙伴单独行动更多的成就。 • 公共儿童福利不可能无处不在。社区和利益相关者必须意识到这一点并参与其中,以保护儿童和青年并加强家庭。社区和利益相关者必须在家庭面临危机之前、期间和之后参与、干预和支持他们。 • 通过战略伙伴关系有效和高效地利用资源,使公共儿童福利成为公共资金的良好管理者,并减少为儿童、青年和家庭提供的服务的重复。 如何为儿童、青年和家庭实现成果? • 有效的伙伴关系可以解决每个儿童、青年和家庭的具体个性化需求,并在其优势的基础上进一步发展,而不是采取千篇一律的方法。 • 有效的伙伴关系具有一些共同的价值观和信念,有责任心,并努力实现相同的结果。 • 有效的伙伴关系考虑到利益相关者和社区的工作,并利用他们各自的技能和专业知识来满足儿童、青年和家庭的需求。• 通过有效的合作关系提高服务的可及性和质量有助于消除差异和减少不均衡现象。 • 鼓励并确保在公共儿童福利机构正式介入后继续提供护理和支持。
太平洋概况,第六卷,盟军战斗机:贝尔 P–39 和 P–400 空中眼镜蛇,南太平洋和西南太平洋 1942-44 年 作者:迈克尔·克拉林博尔德 (Michael Claringbould) 评论:弗兰克·威林厄姆 (Frank Willingham) 南太平洋空战第 5 卷:巴布亚危机,1942 年 9 月 -12 月 作者:迈克尔·克拉林博尔德 (Michael Claringbould) 和彼得·英格曼 (Peter Ingman) 评论:弗兰克·威林厄姆 (Frank Willingham) 美国陆军航空队的蚊式轰炸机 作者:托尼·费尔贝恩 (Tony Fairbairn) 评论:乔恩·巴雷特 (Jon Barrett) B–25 米切尔与日本驱逐舰:俾斯麦海海战 1943 年 作者:马克·拉达斯 (Mark Lardas) 评论:史蒂文·D·埃利斯 (Steven D. Ellis) 战斗机‘Gator’ 作者:约翰·E·诺维尔 (John E. Norvell) 评论:唐纳德·M·毕晓普 (Donald M. Bishop) 地中海空战史 1940-1945 卷五:从罗马陷落到战争结束 作者:克里斯托弗·肖尔斯 (Christopher Shores) & 乔瓦尼·马西梅洛 (Giovanni Masimello) 等人 评论:史蒂文·D·埃利斯 (Steven D. Ellis) 我们从未到过那里第 2 卷:1957 年至 1974 年美国中央情报局 U-2 亚洲和全球行动 作者:凯文·赖特 (Kevin Wright) 评论:查尔斯·P·威尔逊 (Charles P. Wilson) 美国少数:南太平洋海军陆战队王牌 作者:比尔·叶恩 (Bill Yenne) 评论:史蒂文·阿戈拉图斯 (Steven Agoratus) 七秒死亡:对第二次纳戈尔诺-卡拉巴赫战争和……未来的军事分析 作者:约翰·安塔尔 (John Antal) 评论:约翰·西拉菲奇 (John Cirafici) 中央情报局 D 站:51 区:51 区中央情报局 D 站完整插图历史 作者:桑顿·D·巴恩斯 (Thornton D. Barnes) 评论:查尔斯·P·威尔逊 (Charles P. Wilson) 走进市中心:1961 年至 1975 年美国空军在越南、老挝和柬埔寨上空的行动 作者:托马斯·麦凯尔维·克利弗 (Thomas McKelvey Cleaver) 评论:弗兰克·威林厄姆 (Frank Willingham) 1944 年“大周”:争论行动和德国空军的溃败道格拉斯·迪尔迪 (Douglas Dildy) 评论:史蒂文·阿戈拉图斯 (Steven Agoratus) 逃离爪哇:二战期间的非凡故事
1. Wycislo KL, Fan TM。犬骨肉瘤的免疫治疗:历史和系统回顾。J Vet Intern Med。2015;29(3):759-769。2. Vail D、Thamm D、Liptak J 编。Withrow 和 MacEwen 的小动物临床肿瘤学。第 6 版。密苏里州圣路易斯:桑德斯;2019 年。3. Hoption Cann SA、van Netten JP、van Netten C。William Coley 博士和肿瘤消退:历史或未来。Postgrad Med J。2003;79(938):672-680。4. Lascelles BD、Dernell WS、Correa MT 等。接受骨肉瘤保肢手术治疗的犬术后伤口感染与生存率提高有关。 Ann Surg Oncol. 2005;12(12):1073-1083。5. Chen YU,Xu SF,Xu M,Yu XC。骨肉瘤患者术后感染和生存率:对骨肉瘤免疫疗法的再思考。Mol Clin Oncol. 2015;3(3):495-500。6. Liptak JM,Dernell WS,Ehrhart N,Lafferty MH,Monteith GJ,Withrow SJ。皮质同种异体移植和内置假体在远端桡骨肉瘤犬保肢手术中的应用:两种不同保肢技术的前瞻性临床比较。Vet Surg. 2006;35(6):518-533。7. Owen LN,Bostock DE。静脉注射 BCG 对正常犬和自发性骨肉瘤犬的影响。 Eur J Cancer . 1974;10 (12):775-780。8. MacEwen EG、Kurzman ID、Rosenthal RC 等。静脉注射脂质体包裹的胞壁酰三肽治疗犬骨肉瘤。J Natl Cancer Inst . 1989;81(12):935-938。9. Dow S、Elmslie R、Kurzman I、MacEwen G、Pericle F、Liggitt D。对编码白细胞介素-2基因的脂质体-DNA复合物在患有骨肉瘤肺转移的犬中的I期研究。Hum Gene Ther . 2005;16(8):937-946。10. Modiano JF、Bellgrau D、Cutter GR 等。新辅助 fas 配体基因治疗诱发的炎症、凋亡和坏死可提高自发性骨癌犬的生存率。分子治疗学。2012;20(12):2234-2243。11. Visonneau S、Cesano A、Jeglum KA、Santoli D。使用人类细胞毒性 T 细胞系 TALL-104 对犬骨肉瘤进行辅助治疗。临床癌症研究。1999;5(7):1868-1875。12. Mason NJ、Gnanandarajah JS、Engiles JB 等。使用 HER2 靶向李斯特菌进行免疫疗法可诱导 HER2 特异性免疫并在犬骨肉瘤的 I 期试验中显示出潜在的治疗效果。临床癌症研究。 2016;22(17):4380-4390。13. Aratana Therapeutics 获得犬骨肉瘤治疗药物有条件许可 [新闻稿]。堪萨斯州利伍德:Aratana Therapeutics, Inc. 2017。14. Aratana Therapeutics。犬骨肉瘤疫苗,活李斯特菌载体包装。堪萨斯州利伍德。2017。
远征海基平台上的船尾加油 ...................................................................................... 17 审计长对无人系统使能技术的审查 .............................................................................................. 18 DDG-51 多年期采购 .............................................................................................. 18 改进安全可靠的网络使能海军舰艇 ...................................................................... 19 国家安全医院船 ...................................................................................... 19 大型水面战斗舰生产转型报告 ...................................................................... 20 哨兵级快速反应巡逻艇 ...................................................................................... 21 SPY-1D 能力改进 ............................................................................................. 21 弗吉尼亚级潜艇备件 ............................................................................................. 21 海军其他采购 ............................................................................................................. 22 特别感兴趣的项目 ............................................................................................................. 22 联合部队倾转旋翼机训练 ............................................................................................. 22 用于航母接近和回收精确使能技术的集成控制的海上增强制导 ............................................................................................................. 23 战术飞机训练遥测系统资本化................
仪器 EP05、EP7、EP11、TM16.1、TM16.2、TM16.3、TM110、TM112、TM132、TM140、TM154、TM182、TM183、TM190、TM203 - 分光光度计 高级测试仪器 EP10 - 分光光度计(包括漫反射/O° 镜面反射的几何形状) 高级测试仪器 EP10、TM61、TM190 - 特氟龙氟碳垫圈 SDL Atlas Testfabrics, Inc. 高级测试仪器 EP10、TM61、TM86、TM132、TM162、TM187、TM190-加速洗涤机 SDL Atlas 高级测试仪器 EP10、TM61、TM86、TM162、TM190 - 不锈钢钢制杠杆锁罐(1 型和/或 2 型) SDL Atlas 高级测试仪器 TM008 - 标准摩擦色牢度仪 SDL Atlas Testfabrics, Inc. 高级测试仪器 TM015、TM106、TM107、TM163 - 汗渍测试仪 SDL Atlas Testfabrics, Inc. 高级测试仪器 TM015、TM26、TM106、TM107- 传统实验室对流干燥箱 SDL Atlas 高级测试仪器 TM016.1、TM16.2、TM16.3 - 由接近于零透光率的材料制成的测试罩,适用于多种曝光等级,如 10、20、40 等。 AFU Testfabrics, Inc. Q-Lab Corporation 高级测试仪器 TM016.1、TM16.2、TM16.3-卡片纸:163 g/m2 (90磅)一层,白色布里斯托指数 SDL Atlas Testfabrics, Inc. 先进测试仪器 TM016.1-日光曝光柜 Q-Lab Corporation 先进测试仪器 TM016.2、TM16.3、TM111、TM186-黑板温度计 Q-Lab Corporation 先进测试仪器 TM016.2-封闭式碳弧灯 先进测试仪器 TM016.3-黑色标准温度计 Q-Lab Corporation 先进测试仪器 TM020A - 刚性安装卡:非吸水纱线样品安装卡,用于环氧树脂安装方法 TM020A-1 加仑真空室,带泵,能够维持至少 25 英寸汞柱的真空压力。 TM020A-2 件式可铸造安装夹,1.5 英寸 TM020A-背胶砂轮,10 英寸(粒度:120、240、320、400、600、800、1200) TM020A-光纤切割器:由两个刀片、一个螺纹销和一个将刀片牢固固定到位的组件组成的装置。该装置通过垂直向下施加压力来操作。它可将纤维切割成大约 250 微米长 SDL Atlas TM020-差示扫描量热仪 TM020-微型 FTIR 仪器 TM023、TM164-暴露室,适用于容纳氮氧化物并维持恒定的高温和相对湿度 SDL Atlas TM026 - 蒸汽机,配有适当的控制装置,可实现均匀的蒸汽流量和温度 TM027 - 轧棉机(小型)或家用绞干机 SDL Atlas TM030-计数室适用于测定孢子浓度,例如血细胞计数器 TM061 - 预热器/储存模块高级测试仪器 TM061、TM86 - 不锈钢球 SDL Atlas Testfabrics, Inc.高级测试仪器 TM061-用于将罐固定在洗衣机轴上的适配器板 SDL Atlas 高级测试仪器 TM066 - 模板 (40 x 15mm) 高级测试仪器 TM066、TM76、TM84-调节和测试室 SDL Atlas 高级测试仪器 TM076 - 尺寸合适的矩形扁平金属表面,可用作电极
远征海基平台上的船尾加油 ...................................................................................... 17 审计长对无人系统使能技术的审查 .............................................................................................. 18 DDG-51 多年期采购 .............................................................................................. 18 改进安全可靠的网络使能海军舰艇 ...................................................................... 19 国家安全医院船 ...................................................................................... 19 大型水面战斗舰生产转型报告 ...................................................................... 20 哨兵级快速反应巡逻艇 ...................................................................................... 21 SPY-1D 能力改进 ............................................................................................. 21 弗吉尼亚级潜艇备件 ............................................................................................. 21 海军其他采购 ............................................................................................................. 22 特别感兴趣的项目 ............................................................................................................. 22 联合部队倾转旋翼机训练 ............................................................................................. 22 用于航母接近和回收精确使能技术的集成控制的海上增强制导 ............................................................................................................. 23 战术飞机训练遥测系统资本化................
ORCON 的最高机密。‘世界分为三类人:一小群人推动事情发生,一大群人旁观事情发生,而绝大多数人永远不知道发生了什么。’尼古拉斯·默里·巴特勒,J.P. 摩根公司巴特尔家族非常杰出。戈登·巴特尔的祖先托马斯是马萨诸塞湾殖民地的成员;他的名字于 1648 年被登记在马萨诸塞州戴德姆的名册上。他家族的男性成员毕业于名牌大学,在革命军中服役,并且是企业家。他的祖父和同名人,第一代戈登·巴特尔,是 1861 年制定新州西弗吉尼亚宪法的会议的成员 — — 并被认为对该地区废除奴隶制负有主要责任。 1876 年 亚历山大·格雷厄姆·贝尔和托马斯·沃森发明电话 戈登·巴特尔出生于 1883 年 8 月 10 日,在富裕的环境中长大,并成为工业领袖。在 20 世纪初期,大多数行业没有投资研究。如果他们投资,那也只是在进行常规测试的小型实验室里。戈登·巴特尔的愿景是找到一种方法来为工业提供高质量的研究。此外,他相信研究可以提供改善人们生活质量的方法。 1886 年 - 查尔斯·马丁·霍尔发现一种廉价的铝生产工艺。 1901 年 - 卡内基以 2.5 亿美元的价格出售了他的钢铁公司,猜猜卖给了谁?J. P.