摘要:荧光染料标记是分析活生物体中纳米颗粒的命运的常见策略。然而,在多大程度上可以改变原始纳米颗粒生物分布的程度。在这项工作中,两种广泛使用的荧光染料分子,即Atto488(Atto)和Sulfo -Cy5(S -CY5),已共价附加到一个良好的CXCR4靶化的自我组合蛋白Nananoparticle(已知T222 -GFP -gfp -h6)上。随后已经将标记为T22 -GFP -H6 -ATTO和T22 -GFP -H6 -S -CY5纳米颗粒的生物分布与不同的CXCR4+肿瘤小鼠模型中的非标签纳米粒子的生物分布进行了比较。我们观察到,虽然父母T22 -GFP -H6纳米粒子主要是在CXCR4+肿瘤细胞中积累的,但标记为T22 -GFP -H6 -ATTO和T22 -GFP -H6 -SCY5纳米粒子在非生物分配模式中表现出急剧变化,累积的含量是巨大的,累积了,累积了,累积了,累积了,累积了,累积了。肿瘤靶向能力。因此,在靶向纳米级药物输送系统的设计和开发过程中,应在目标和非目标组织摄取研究中避免使用此类标记分子,因为它们对纳米材料的命运的影响可能会导致实际的纳米粒子生物分布的遗迹。
光活性过渡金属复合物是结合高光稳定性和长发光寿命的发光体。但是,水溶液中的光学性能降低限制了它们在生物系统中的使用。在这里,研究了在聚合物纳米颗粒(NPS)中串联的二胺复合物和近红外复合物(NIR)发射Cy5染料的物理化学和光学物理特性以及生物成像的兼容性。通过改变聚合物,尺寸为20至70 nm,并封装为≤40wt的RE复合物,即每NP的≈11000re络合物。封装后,RE络合物的光致发光(PL)量子产率增加了8倍至≈50%(乙腈的6-7%),导致PL亮度高达10 8 m -1 cm -1,PL寿命为3-4μs。复杂激发后,CY5的串联可产生非常明亮的NIR发射。非常紧密的转到Cy5供体 - 受体距离降低至≤2nm,而货物官方超过90%则由PL寿命测量结果确定。Re-Cy5 NPS进入可见和NIR中的高对比度PL成像,进入哺乳动物细胞。这种详细的表征可以更好地理解过渡金属型FRET NP的光物理特性,并为迈出了新的一类新型明亮发光NP探针的效果设计的重要步骤。
图3(a):荧光Cy5与N3功能化PPEGMA的共轭方案。(b)Cy5偶联细胞的CLSM显微照片。(c):酶结合的方案(例如β-gal)到PEGMA和随后的聚合。请注意,某些酶可能会偶联到一个以上的PPEGMA链中,从而有效地交联了聚合物。(d):β-GAL结合酵母的活动%(吸光度405 nm / OD 600)。(e):β-gal结合的酵母(YPL)孵育的β-gal偶联酵母。(f):与OG 25 mm一起孵育的β-gal偶联酵母的%OD 600。显示为SD的错误条,n = 3重复。**:p <0.01,***:p <0.001。比例尺:5 µm(PEGMA-N 3),10 µm(其他显微照片)。
摘要:一个名为plexciton的准粒子来自等离子体和分子激子之间的杂交,这些杂交在灭绝,散射和反射光谱方面表现出特征的光谱特征,例如Fano共振和RABI分裂。然而,对丛杂种中荧光特性的理解尚不清楚,尤其是对于非线性上将的排放。在这封信中,我们准备了三个组成的丛杂种杂交体,该杂种与两种氰胺染料(CY3和CY5)耦合到AG纳米结构膜并研究了它们增强的非线性辐射,包括两光子发光(TPL),第二谐波(TPL),第二谐波生成(SHG)(SHG)和表面增强的Raman Raman Raman散射(Sersserssers)。丛杂种显示出分裂的灭绝频谱,其中五个峰与二聚体染料的杂种诱导的五峰,并带有Ag膜的表面等离子体共振。在1260 nm的激光激发下,(Cy3-cy5)/ag混合动力车的TPL增强了6.3倍,与Cy5/ag的两种组件混合体相比,SHG的增强率为5.1倍。我们的实验结果为设计和制造具有高效的非线性辐射设计和制造多组分丛设备提供了宝贵的见解。丛杂种,其特征在于其特征灭绝的特性和很大程度上增强的上流发射,对非线性光学,量子信息处理,生物医学感应和光化学的应用有很大的希望。关键字:等离子体,分子激子,多组分,两光子发光,第二谐波产生,表面增强的拉曼散射
图2。合成,表征和DBCO修饰脂质体的体外靶向效应。(a)DBCO修饰的脂质体合成DSPE-PEG 2000 -DBCO,DOPC和胆固醇的示意图。使用DSPE-PEG 2000合成未修饰的脂质体。(b)DBCO-LIPO的大小和Zeta电位。(c)DOX和R837混合物的HPLC痕迹或dox/r837的提取物的提取物。将检测波长设置为254 nm。(d)在(c)中〜6.5分钟时检测到的DBCO脂质的UV吸收光谱。(E)用AC 4 Mannaz或PBS预处理的4T1细胞的共聚焦图像48小时,然后与DID封闭的DBCO-LIPO孵育30分钟。比例尺:10μm。(f)用AC 4 Mannaz或PBS预处理的4T1细胞的平均CY5荧光强度48小时,然后与DID封闭的DBCO-LIPO(2 mg/ml)孵育30分钟。(g)用AC 4 Mannaz预处理的4T1细胞的平均CY5荧光强度,然后与不同浓度的DID封闭DBCO-LIPO孵育30分钟。所有数值数据均表示为平均值±SD(0.01 < *p≤0.05; **p≤0.01; ***p≤0.001)。
dPCR 微生物 DNA 检测试剂盒旨在使用数字 PCR 检测细菌、真菌、寄生虫、病毒、抗生素抗性或毒力因子基因的存在。该检测可以在 QIAcuity ® 上大约两小时内完成,且无需太多手动操作。该检测针对超过 700 种细菌、真菌、寄生虫、病毒、抗生素抗性或毒力因子基因。检测产品由一个含有引物对和水解探针的试管组成,并可针对染料(荧光团)进行配置。可选染料包括 FAM、HEX、ROX、TAMRA 和 Cy5,可在单个试剂盒中混合搭配最多 5 个目标/检测
三重阴性乳腺癌(TNBC)中的紫杉烷功效受到肿瘤积累不足和严重的脱靶效应的限制。纳米药物提供了一个独特的机会来增强这种药物的抗癌效力。在这里,对封装多西马谢尔(DTXL)和近红外化合物脂质-CY5进行了1,000 nm compoidal聚合物纳米结构(DPN)的盘状聚合物纳米结构(DPN)。dpn。与常规的“单个通用”方法相比,所得的“多通道” DPN表现出更高的DTXL载荷,脂质-CY5稳定性和刚度。共聚焦显微镜证实,MDA-MB-231细胞不接受DTXL-DPN,而是宁愿坐在细胞膜旁边,并缓慢释放其DTXL。空DPN对TNBC细胞没有毒性,而DTXL-DPN具有可与游离DTXL相当的细胞毒性潜在(IC 50 = 2.6 nm±1.0 nm,而在72 h时为7.0 nm±1.09 nm)。在原位鼠模型中,DPN在TNBC中积累的DPN比自由DTXL更有效。仅使用2 mg/kg DTXL,每2天静脉内给药,总共13种治疗,DTXL-DPN诱导的肿瘤退化,并在120天以120天的自由-DTXL的生存率与30%的生存率相关。所有未经治疗的小鼠在90天之前屈服。总体而言,这些数据表明,循环血小板的行为的血管限制的多通道DPN可以有效地将化学疗法分子递送到恶性组织中,并有效地治疗至少紫杉烷剂量的原位性TNBC。
该套件包含一个正对照模板,该模板将在FAM和CY5通道中放大。每次使用套件时,运行中必须至少包括一个阳性对照反应。一个阳性结果表明在该特定实验情况下检测靶基因的引物和探针正常工作。如果获得了负结果,则测试结果无效,必须重复。应注意确保阳性对照不会污染任何其他套件组件,从而导致假阳性结果。这可以通过在PCR后环境中处理该组件来实现。还应注意在将阳性对照添加到运行中时避免其他样品的交叉污染。可以通过密封所有其他样品和负面对照来避免这种情况,然后将阳性对照置于正面对照中。
摘要 CDC 是一种新型超小(6-7 纳米)纳米颗粒药物偶联物,在动物模型中已证明其比抗体药物偶联物具有更快的肿瘤靶向性和更深的肿瘤穿透性。CDC 能够靶向难以接近的脑和胰腺肿瘤,同时由于其高效的肾脏消除,对正常组织的暴露有限。CDC 由二氧化硅核心组成,其中共价封装了远红染料 Cy5。二氧化硅核心共价涂覆有一层聚乙二醇,然后用靶向部分和有效载荷进行功能化。ELU001(EC112002)是一种 CDC,通过蛋白水解可裂解的连接体连接约 20 个拓扑异构酶 1 抑制剂 exatecan 分子作为有效载荷和约 15 个叶酸,以提供对 FR a 过表达癌症的靶向性。 ELU001 被迅速内化到表达 FR a 的细胞中,并被运送到溶酶体,在此,exatecan 从 CDC 中释放出来。
Cy5-PP-IT4 NPs 在 Fn14 阳性 TNBC 细胞中表现出剂量和时间依赖性的细胞摄取(图 S1);通过乳液溶剂蒸发法合成纳米颗粒(表 S1);用于识别目标群体的细胞标记物(表 S2);分离颅内肿瘤的流式细胞分析的代表性门控策略(图 S2);在未患肿瘤的 BALB/c 小鼠中全身给药后,Fn14 靶向不会增加清除率、诱导毒性或促进 NP 在非清除器官中的积累(图 S3);全身 IVIS 成像显示全身给药后 Cy5 标记的纳米制剂在 TNBC BT 中的定位(图 S4);分析携带肿瘤的 BALB/c 小鼠肝脏和脾脏中 Fn14 的表达(图 S5);在脑内携带 TNBC 肿瘤的小鼠中全身给药后纳米制剂的细胞分布(图 S6);纳米制剂的全身给药不会促进细胞死亡(图S7)(PDF)
