摘要:全固态电池(ASSB)的实际应用需要在低压下可靠运行,这仍然是一个重大挑战。在这项工作中,我们研究了由不同粒径固态电解质(SSE)组成的正极复合微结构的作用。由 LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)和细颗粒 Li 6 PS 5 Cl(LPSC)制成的复合材料在 NCM811 颗粒表面显示出更均匀的 SSE 分布,确保了紧密接触。此外,该复合材料的曲折度降低,从而增强了锂离子传导。这些微观结构优势可显着降低电荷转移电阻,有助于抑制低压条件下循环过程中的机械变形和电化学降解。因此,细 LPSC 正极复合材料在 2 MPa 的中等电堆压力下表现出增强的循环稳定性,优于粗 LPSC。我们的发现证实了微结构设计在实现低压条件下高性能 ASSB 运行中的重要作用。
∗ 我们感谢我们的讨论者 Edouard Challe、Fabrice Collard、Alisdair McKay 和 Carolin Pflueger 提出的极其有用的建议。我们还感谢 George-Marios Angeletos、Larry Christiano、Cosmin Ilut、Nir Jaimovich、Ana Lariau、Stephen Terry 以及许多研讨会和会议的参与者提出的许多有益评论。† 波士顿学院经济学系,马萨诸塞州 Chestnut Hill 02467。电话:617-552-2182。电子邮件:susanto.basu@bc.edu。‡ 应用经济学系,3000, Chemin de la Cˆote-Sainte-Catherine,蒙特利尔 QC,H3T 2A7 加拿大。电话:514-340-6810。电子邮件:giacomo.candian@hec.ca。 § 康奈尔大学经济学系,纽约州伊萨卡 14853。电话:607-255-4254。电子邮件:ryan.chahrour@cornell.edu。¶ 波士顿学院经济学系,马萨诸塞州栗树山 02467。电话:617-552-8704。电子邮件:rosen.valchev@bc.edu。
摘要 ArianeWorks 是由法国国家空间研究中心和阿丽亚娜集团发起的创新平台,它加速了 Themis 的开发,Themis 是一种由液氧和生物甲烷推动的低成本可重复使用的火箭级演示器,为 2030 年的欧洲发射系列铺平了道路。根据其股东的生态设计愿景,ArianeWorks 在 Themis 计划中启动了生态设计战略的实施。在此背景下,本研究介绍了基于半可重复使用发射器的发射服务的生命周期评估,该发射器源自 Themis 并在圭亚那航天中心运行,该评估发生在 Themis 的早期设计阶段。该分析意味着开发一个特定的框架来解释下级的可重复使用性,需要使用经过调整的功能单元、在生命周期中引入新的阶段以及特定的参数化来描述其复杂性。本文接着进行了敏感性分析,以确定影响的主要驱动因素并支持设计权衡分析,然后估计最大可信缓解潜力。然后,概述了一种评估可重复使用性可能带来的环境效益的方法,并为所研究的发射服务提供了初步结果。影响评估结果证实,结构和推进剂的生产对阿丽亚娜火箭的生命周期影响最大。由于延长寿命阶段会产生额外影响,因此低级火箭的回收和翻新也发挥着重要作用,但也使一些影响减少成为可能,这些影响可以通过明确的惯例来隔离。跨大西洋运输阶段或测试和加油期间的推进剂消耗会造成不可忽略的影响,这些影响可以通过采用节俭的方法或技术创新来减轻。总体而言,该研究强调,与基线相比,对气候变化和资源枯竭的总影响可能减少约 30-80%。然而,尽管人们普遍认为可重复使用性可以减少生命周期影响,但研究表明,实际情况要复杂得多,因为从发射器的环境性能比较中得出的结论取决于惯例、市场参数、运营方案和环境影响类别。对于所研究的发射服务,结果表明,虽然可重复使用性可能会减少对资源枯竭的影响,但它可能会增加对气候变化的影响。此外,可重复使用性的任何环境效益都可能被这项技术所促进的全球太空活动的增长完全抵消,从而导致适得其反的反弹效应。本研究强调,由于采用生态设计方法,影响可能会减少,这将减轻这种影响。关键词:环境影响、生命周期评估、生态设计、发射器、可重复使用性、方法论 首字母缩略词/缩写
摘要:植物charcol的作用是促进植物中更健康,更急剧的生长。因此,碳循环主要体现在绿色植物中,从空气中吸收二氧化碳,从而通过光合作用将其转化为葡萄糖,同时释放了生物圈中的氧气。然而,人工碳固定是在研究中通过时空尺度转换的直接或间接人工去除大气二氧化碳。本文回顾了碳循环中植物来源碳的流动模式和机制。试图通过碳循环中的多种机制来解释碳从一个储层移动到另一个储层。在研究中预计对碳峰的生物周期过程和碳中和碳中和的研究提供了参考意义。
2025财务计划周期CVRD拥有并运营运输和治疗基础设施,用于从Courtenay和Comox社区以及国防部(19 Wing and HMCS Quadra)和K'ómoks第一民族(按服务合同)(按服务合同)来处理废水。Comox Valley水污染控制中心于1984年委托,是次要废水处理设施。CVRD董事会将运营和行政决策委托给科莫克斯谷污水处理委员会。CVRD还为选举区域的下水道和化粪池提供了液体废物管理计划,并管理了两个小型废水收集和处理系统。关键结果成功
生命周期分析/评估(LCA)是现有的框架,非常适合评估二氧化碳去除碳(CDR)的环境影响。通过设计,LCA对不同生命周期阶段的产品或过程的潜在环境影响提供了整体观点。这包括通过生命终止提取原材料。对环境的排放(空气,水和土地)被转化为从气候变化到人类健康的各种潜在影响。两个国际标准化组织(ISO)标准提供了进行LCA的原理和框架(14040)以及要求和准则(14044)(ISO 2006a,2006b)。单独的标准ISO 14067专门针对产品的碳足迹(CFPS)的报告(ISO 2018)。它主要基于ISO 14040/14044,但更狭窄地关注与气候变化有关的潜在影响。不仅可以使用LCA来帮助确定净CO 2 e去除CDR方法,而且还可以帮助评估具有其他环境影响的潜在权衡。即使在ISO标准中对LCA的方法进行了整理,我们也认识到需要为这些标准中的主观要素建立特定的最佳实践,以协调数据和方法,以允许对CDR方法进行一致的评估。本文档专门针对CDR方法的一个子集,生物量碳去除和存储(BICR)。这是一系列文档中的第二个,旨在支持CDR方法的全生日温室气体排放量的强大核算。1.1目的美国能源部(DOE)为LCA发表了最佳的LCA,直接捕获使用存储(DACS)(Cooney 2022),这是一种引起了浓厚兴趣的CDR技术。本文档的重点是BICRS技术,这是CDR方法的一部分,可以通过持久存储碳来提供脱碳益处,该碳源自具有或不产生能量或生物产品的生物量,以取代化石碳衍生的对应物。鲁棒和整体LCA对于评估气候益处的潜力和跟踪BICRS技术的进步至关重要。它也是建立跨BICRS技术比较的基础,更广泛地是其他CDR方法,这些方法促进了在监管,市场和其他环境中摄入BICRS技术的基础。这项工作的目的是提供针对BICRS系统实施ISO标准的特定最佳实践,以在LCA的四个阶段中实现一致,稳健的LCA:目标和范围定义,生命周期库存分析,生命周期影响评估和解释。我们设想本文档的受众包括技术开发商,联邦资助获奖者,州和联邦级别的政策制定者和监管机构,实体(公司,组织,组织,个人)有兴趣评估BICRS采购以及BICRS技术的潜在托管社区。虽然本文档提到了当前提出的途径的示例,但它并非仅适用于这些途径。所讨论的原则通常应用于提供相同功能的任何工程BICRS系统。这不是法律文件,因此根据美国能源部及其国家实验室的经验提供了最佳实践建议。本文档并非旨在使或取消任何特定的BICRS途径资格,而是为如何以强大且一致的方式进行这些方法提供最佳实践。doe认识到,在科学理解,强大的监测,报告和验证方法(MRV)以及商品化信用的市场创造方面,更广泛的CDR景观(包括BICR)正在快速发展。这些发展可能会随着时间的推移对最佳实践进行修改。该文档是将LCA应用于BICRS方法的初步建议。另外,如此
1. 拟议核心平台的背景和理由 (25 分) 2. 运营、治理、管理和人力资源 (20 分) 3. 用户基础、参与、沟通和培训 (20 分) 4. 对公平、多样性和包容性 (EDI) 的承诺 (10 分) 5. 财务管理和 D2R 资金需求 (25 分) 汇总评估并计算平均总分。所有七个申请的平均分数在 81-90 之间,反映了提交内容的整体实力。
电路中间测量 (MCM) 是容错量子计算发展中的关键因素。虽然在实现 MCM 方面取得了快速的实验进展,但表征噪声 MCM 的系统方法仍在探索中。在这项工作中,我们开发了一种循环基准 (CB) 型算法来表征噪声 MCM。关键思想是对经典和量子寄存器进行联合傅里叶变换,然后估计傅里叶空间中的参数,类似于 CB 型算法中用于表征 Clifford 门的 Pauli 噪声通道的 Pauli 保真度。此外,我们开发了一种 MCM 噪声可学习性的理论,该理论确定了哪些信息可以学习噪声模型(在存在状态准备和终止测量噪声的情况下)以及哪些信息不能学习,这表明所有可学习的信息都可以使用我们的算法来学习。作为一种应用,我们展示了如何使用学习到的信息来测试 MCM 中测量噪声和状态准备噪声之间的独立性。最后,我们进行数值模拟来说明该算法的实际适用性。与其他 CB 型算法类似,我们希望该算法能够提供一个具有实验意义的有用工具包。
本文件介绍了使用阿贡国家实验室 (ANL) 开发的 45ZCF-GREET 模型(2025 年 1 月版)计算运输燃料生产生命周期温室气体 (GHG) 排放的方法。该模型被命名为“45ZCF-GREET”,因为它是为了支持 IRC 第 45Z 条授权的清洁燃料 (CF) 税收抵免而开发的。45ZCF-GREET 包括可持续航空燃料 (SAF) 和非 SAF 燃料的原料特定燃料生产途径。SAF 生产途径利用 40BSAF-GREET 中包含的途径,40BSAF-GREET 是与跨机构可持续航空燃料生命周期分析工作组合作开发的,并考虑了 EPA 在 2023 年 12 月 13 日关于《清洁空气法》第 211(o) 条的信函中提供的信息,1并与 UST 协商,用于实施 40B 税收抵免。
Max Trax 已经通过各种筹款活动、众筹活动和外部资助筹集了大量资金。此外,他们还成功申请了英国自行车骑行基金,这是一项赛事遗产计划,旨在解决参与不平等问题,并为自行车运动中代表性不足的群体创造新的机会。