1天然产品的转化基因组挖掘,培养基和感染医学研究所Tübingen(IMIT)(IMIT),研究学研究所生物医学信息学研究所(IBMI),Tübingen,Auf der Morgenstelle 28,72076Tübingen2 28,72076Tübingendenoker -Nord nord sworkity flative forkitizan of Denok nove nord swiment fin Plads,220,2800 Kongens Lyngby,丹麦3计算生物学,国家农业食品生物技术研究所(NABI),S.A.S.德国6生物信息学中心Saar和Saarland大学,Saarland信息学校园,E2 1,66123Saarbrücken,德国7分子生命科学系和瑞士生物信息学研究所和苏黎世大学,苏黎世大学,苏黎世大学,Winterthurerstrasse,190年Drovendaalsesteeg 1 Radix West,6708pb Wageningen,荷兰9德国感染研究中心(DZIF),合作伙伴Tübingen,Auf der Morgenstelle 28,72076Tübingen,德国,德国
作为当前项目省电探索的一部分,研究了光耦合器的替代品用于电流隔离。项目使用了大约 75 个电流隔离器,工作条件为 DC 至 1.2 Mbps。如果使用光隔离器,功耗将超过 10 瓦,还可能导致辐射引起的性能下降 [1]。为了降低功耗,对来自三家不同制造商的非光隔离器进行了评估。这种省电方式将使隔离器的总功耗从大约 10 瓦降低到不到 2 瓦。该项目的辐射要求规定,所选部件在 LET 低于 60 MeV·cm 2 /mg 时不得出现破坏性的单粒子闩锁 (SEL) 等破坏性单粒子。因此,它们最初在 NRL 的脉冲激光 SEE 测试设备上进行了破坏性 SEE 筛查。同时,还对部件进行了单粒子翻转 (SEU) 测试。经测试的三个部件中,有一个部件对 SEL 免疫,SEU 很少。该部件的重离子测试在加州大学劳伦斯伯克利分校实验室 (LBL) 88 英寸回旋加速器上进行,并证实了脉冲激光测试结果。最后,还在 NRL 的 Co 60 室中使用伽马射线对这些部件进行了总电离剂量 (TID) 测试,结果发现其可承受 50 krad(Si) 的辐射。
由于连续功率 (cw)、大电流加速器在各种应用中都是必需的,例如散裂中子源和加速器驱动的嬗变技术[1],因此稳定、高密度等离子体源作为离子源变得越来越重要。开发能够以大电流、低发射率束流连续工作的离子源对这些高强度加速器来说是一个巨大的挑战。最近,通过满足这些要求,已经为大电流加速器开发了使用电子回旋共振 (ECR) 的微波离子源[2]。然而,这种源需要相对较强的磁场,这可能会增加发射率、尺寸和成本,以便为未来的应用开发更高电流密度和更大束流的源。螺旋模式产生了稳定的高密度等离子体,主要用于微电子等离子体处理[3]。注意到螺旋波可以在低频、低场、高密度范围内传播,螺旋等离子体源被提议作为连续波大电流、低发射率加速器的离子源[4]。为了证实螺旋等离子体的这些优良特性,构建了一个紧凑的高密度螺旋等离子体源,并研究了其特性。第二部分描述了螺旋等离子体源的实验装置和等离子体的特性。第三部分研究了螺旋等离子体的束流提取特性。通过实验和模拟,研究了在低于 5 kV 的低提取电压下,采用简单提取几何结构的束流特性。最后一节给出了结论。还提出了一种使用螺旋波的新型强流离子源设计。
摘要:在人口衰老增加神经退行性疾病负担的时代,对大脑衰老的机械性的破译比以往任何时候都更为重要。在这里,我们提出了使用负电离模式质谱成像的小鼠大脑神经化学改变的空间代谢组学分析。同时研究了乙酰胆碱酯酶抑制剂摄取的年龄依赖性作用。为了进行超高质量分辨率分析,我们使用了傅立叶转换离子回旋谐振光谱仪。为了补充这一点,一个被困的离子迁移率光谱法分析仪提供了高速和横向分辨率。所选方法促进了从氨基酸到鞘脂的广泛代谢产物的检测和鉴定。我们报告了脑脂质的显着,年龄依赖性的改变,这对于硫化物和溶物磷酸酸最为明显。硫化物物种主要定位于白质,随着年龄的增长而增加或减少,具体取决于碳链长度和羟基化阶段。溶物磷酸酸在详细的皮质和海马子区域随着年龄的增长而降低。谷氨酸/谷氨酸比例的年龄依赖性增加,这是胶质神经元互连和神经毒性的指标,在他摄取他的胶质素互连和神经毒性。提出的代谢映射方法能够提供脂质信号传导和神经传递的变化的可视化,因此可以进一步阐明与年龄相关的神经化学途径。关键字:衰老,乙酰胆碱酯酶抑制剂,脑,脂质,质谱成像,代谢产物,亚硫酸盐,舒服■简介
48 Cr是双光子发射计算机断层扫描的有前途的放射性同位素。1)提出的方法可以实现高空间分辨率和高信号噪声比。2)作为48 cr,一对112和308-kev Photons可用于重合成像。1)我们计划在46 Ti(α,2 N)48 Cr反应中产生48 Cr。在核医学中,必须将48 CR与目标材料和副产物进行化学分离。 在这项研究中,我们使用51 cr(t 1 /2 = 27.7 d)的Nat Ti(α,Xn,Xn,Xn)51 Cr反应产生的51 cr(t 1 /2 = 27.7 d)的α-粒子辐照NAT TI(NAT =天然同位素丰度)靶标的无载液cr radiotracers的生产方法。 将来,可以使用昂贵的46 Tio 2作为目标材料生产48 Cr。 因此,我们还研究了CR放射性示踪剂生产后的目标材料的回收率。 48,51 cr是在使用Riken AVF Cyclotron的Nat Ti(α,Xn)48,51 Cr Rections中产生的。 将45 mg/cm 2的金属NAT TI板用28.9-MEV的强度为3.1粒子μA。 在NAT Ti(α,X)48 V反应中还产生了48 V(T 1/2 = 16.0 D)的48 V(T 1 /2 = 16.0 D),并且作为电子捕获和β + -48 Cr的女儿(t 1/2 = 21.6 h)。 希望在成像实验之前使用48 Cr的成像实验之前去除长期寿命的48 V,以增加信噪比。 将辐照的NAT Ti板(63.4 mg)溶解在1 ml浓缩的HF(c。hf)和0.3 mL C的混合物中。 HNO 3通过加热,并将溶液蒸发至干燥。在核医学中,必须将48 CR与目标材料和副产物进行化学分离。在这项研究中,我们使用51 cr(t 1 /2 = 27.7 d)的Nat Ti(α,Xn,Xn,Xn)51 Cr反应产生的51 cr(t 1 /2 = 27.7 d)的α-粒子辐照NAT TI(NAT =天然同位素丰度)靶标的无载液cr radiotracers的生产方法。将来,可以使用昂贵的46 Tio 2作为目标材料生产48 Cr。因此,我们还研究了CR放射性示踪剂生产后的目标材料的回收率。48,51 cr是在使用Riken AVF Cyclotron的Nat Ti(α,Xn)48,51 Cr Rections中产生的。将45 mg/cm 2的金属NAT TI板用28.9-MEV的强度为3.1粒子μA。在NAT Ti(α,X)48 V反应中还产生了48 V(T 1/2 = 16.0 D)的48 V(T 1 /2 = 16.0 D),并且作为电子捕获和β + -48 Cr的女儿(t 1/2 = 21.6 h)。希望在成像实验之前使用48 Cr的成像实验之前去除长期寿命的48 V,以增加信噪比。将辐照的NAT Ti板(63.4 mg)溶解在1 ml浓缩的HF(c。hf)和0.3 mL C的混合物中。 HNO 3通过加热,并将溶液蒸发至干燥。用1 ml的c溶解残留物。 HF加热,并将溶液蒸发至干燥。通过加热将残留物溶解在6 ml的4.5 m HF中。随后,将溶液馈入阴离子交换柱(Muromac 1x8,100-200 et chemes,10 mm i.d.×110毫米高)。用9 ml(1 ml×9)的4.5 m HF和35 mL(5 ml×7)的C洗涤树脂。 HF。组合了4.5 m HF的分数,并将3 mL用于ICP-MS测量,以确认NAT TI的污染。使用阳离子交换色谱法将4.5 m HF的其余部分蒸发至干燥,并进一步纯化48 V。将残基溶解在3 ml的0.5 m HNO 3中。溶液(1 mL×3)被送入阳离子交换柱(Muromac 50wx8,100-200 Mesh,5 mm I.D.×50毫米高)。用0.5 m HNO 3和5 ml(1 ml×5)的3 ml(1 ml×3)洗涤树脂,为6 m HNO 3。用GE检测器对阴离子和阳离子交换柱进行每个洗脱液进行γ射线光谱法进行了γ射线光谱法,以获得51 cr和48 V的洗脱曲线。以评估每个c的Nat Ti的洗脱曲线。 HF
1。为学生提供有关基因组学和蛋白质组学的基本知识2。对基因组映射,结构/功能基因组学,基因组学和蛋白质组学涉及的技术的广泛知识。课程内容单元1:OMICS的基因和基因组介绍;基因组学类型;基因:orf;外显子;内含子;原核,真核和线粒体/叶绿体基因组; shot弹枪DNA测序; c-value&paradox;人类基因组项目。单元2:基因组图和分析基因组映射的基因表达类型;涉及基因组图和基因表达分析的技术(RFLP,RAPD,SSCP,SSLP,STS,RT-PCR; DD-PCR,SNP,FISH,FISH,NUCLEASE保护测定,分子杂交)。单元3:蛋白质组学概念和蛋白质组成分的基础;蛋白质组学在生物学功能中的重要性;蛋白质 - 蛋白质相互作用和研究它的方法:蛋白质阵列,交叉链接方法,亲和力方法,酵母杂种系统。单元4:蛋白质质谱法(MS)的质谱分析 - 肽质量指印,质量精度,分辨率,灵敏度;离子来源:电喷雾电离,基质辅助激光解吸和电离;质量分析仪:四极,离子陷阱,飞行时间,圆形,傅立叶 - 转换离子回旋共振,混合分析仪;探测器; MS-MS; LC-MS。教科书:-1。基因组分析和基因组学原理S.B. Primrose和R.M. Twyman,第三版(Blackwell Publishing)。2。Liebler,“蛋白质组学简介” Humana出版社3。Conard,爱德华。 基因组学。 2.Pennington,SR,Dunn MJ,“蛋白质组学:功能的蛋白质序列”。Conard,爱德华。基因组学。2.Pennington,SR,Dunn MJ,“蛋白质组学:功能的蛋白质序列”。Apple Academics参考书:-1。ODD RW,Primrose SB,“基因操纵原理,基因工程概论”,Blackwell Science Publications。viva书3.生物技术的质谱法:Gary Siuzdak。
1美国剑桥大学花园街60号天文学系02138,美国2个天体物理学中心哈佛大学和史密森尼教尼,马萨诸塞州剑桥市花园街60号,美国马萨诸塞州剑桥02138,美国3劳伦斯伯克利伯克利国家实验室,1 Cyclotron Road,berkeleron Road,berkeley Native a Clumansia voriagnia belonicia ventire,Bunmorwia ventialia verytia vormentia,Bunmorwia ventialia,Bunmorwia verytia,44477777777777777777.44477777777777777777年,美国40级,美国4号,美国4号,美国。马萨诸塞州波士顿02215,使用5个物理与天文学系,伦敦大学学院,伦敦高尔街,WC1E 6BT,英国6BT 6 InstitutodeFísicaInstituto defísica,Nacional autotauna nacional autionmo autotoynoma de M´essico,CD。de m´exico C.P.04510,M'Exic 7 De Fimica,CRA,Defísica。 1号 18A-10,IP大楼,CP 111711,哥伦比亚,哥伦比亚8号defísica,SerraHúnter,SerraHúnter,Universityoutònomade Barcelona,08193,贝拉塔拉,西班牙Bellatarra,西班牙9.西班牙巴塞罗那10学院Catalana de Rececato I Estisavançats,PasseigdeLluís公司,23,08010西班牙西班牙11号,堪萨斯州立大学,堪萨斯州立大学,曼哈顿116号,曼哈顿,堪萨斯州Cardwell Hall,堪萨斯州66506,堪萨斯州66506,美国12号。 Avenida Avenida 40,E-28040,马德里,西班牙14号密歇根大学,密歇根州安阿伯市48109 Ann Arbor,使用15 NSF的Boreb,950 North Cherry Avenue,Tucson,亚利桑那州图森85719,美国85719,美国16 National Astronomic of Science of Scient of Sci beije,A20 DATEM,A20中国共和国04510,M'Exic 7 De Fimica,CRA,Defísica。1号18A-10,IP大楼,CP 111711,哥伦比亚,哥伦比亚8号defísica,SerraHúnter,SerraHúnter,Universityoutònomade Barcelona,08193,贝拉塔拉,西班牙Bellatarra,西班牙9.西班牙巴塞罗那10学院Catalana de Rececato I Estisavançats,PasseigdeLluís公司,23,08010西班牙西班牙11号,堪萨斯州立大学,堪萨斯州立大学,曼哈顿116号,曼哈顿,堪萨斯州Cardwell Hall,堪萨斯州66506,堪萨斯州66506,美国12号。 Avenida Avenida 40,E-28040,马德里,西班牙14号密歇根大学,密歇根州安阿伯市48109 Ann Arbor,使用15 NSF的Boreb,950 North Cherry Avenue,Tucson,亚利桑那州图森85719,美国85719,美国16 National Astronomic of Science of Scient of Sci beije,A20 DATEM,A20中国共和国
Singapore, 20 October 2020 NTU spin-off Zero Error Systems launches new radiation-protection chips for satellites and autonomous vehicles The Singapore tech firm also raised S$2.5 million seed funding A “smart chip” capable of protecting satellites from radiation damage could enable fut ure satellites to carry more sophisticated equipment and yet be less costly to build, th anks to an innovation developed by Nanyang Technological University,新加坡(NTU新加坡)研究人员。NTU开发的智能芯片由由电气和电子工程学院的Joseph Chang教授领导的团队可以检测到传入的重型辐射,并有可能对电子产品造成严重损害。 当检测到辐射的效果(称为单个事件闩锁)时,智能芯片会安全地关闭卫星中的其他电子设备,并在危险通过后将其拒之门外。 芯片本身得到了硬化和保护,以防止重型离子辐射,并可以在整个活动期间保持“清醒”。 被称为闩锁检测和保护(LDAP)芯片,现在由NTU的创新和企业公司Ntuivitive孵育的零越系统(ZES)商业化。 LDAP的技术最近获得了两项专利,并已在一个回旋子(一种产生辐射颗粒的粒子加速器)的重离子测试中进行了验证。 该芯片已在日本京胡岛理工学院,日本,巴拉圭和菲律宾建造的三个Pico-satellites中安装,作为辐射保护电路的一部分,预计将于2021年首次推出太空。可以检测到传入的重型辐射,并有可能对电子产品造成严重损害。当检测到辐射的效果(称为单个事件闩锁)时,智能芯片会安全地关闭卫星中的其他电子设备,并在危险通过后将其拒之门外。芯片本身得到了硬化和保护,以防止重型离子辐射,并可以在整个活动期间保持“清醒”。被称为闩锁检测和保护(LDAP)芯片,现在由NTU的创新和企业公司Ntuivitive孵育的零越系统(ZES)商业化。LDAP的技术最近获得了两项专利,并已在一个回旋子(一种产生辐射颗粒的粒子加速器)的重离子测试中进行了验证。该芯片已在日本京胡岛理工学院,日本,巴拉圭和菲律宾建造的三个Pico-satellites中安装,作为辐射保护电路的一部分,预计将于2021年首次推出太空。教授Chang解释说,他们保护卫星免受辐射损伤的新方法与常规方法不同,这种方法使用卫星的每个组件使用辐射硬化的空间级电子设备。这是昂贵的,使卫星更重,并将选择降低到老年一代的“尝试和测试”组件。“通过使用我们的LDAP芯片,卫星制造商现在可以使用最新的
极光现象本质上是动态的:观测到的事件具有丰富的结构,在空间和时间上都很复杂,具有科学上有趣的特征。虽然使用 CCD 或全天相机进行光学极光观测很常见,但极光在无线电频率 (RF) 下也具有有趣的发射特性,特别是在低频和高频波段。极光发射无线电观测器 (AERO) 是一颗 6U 立方体卫星,配备了新型电磁矢量传感器 (VS) 天线。VS 将瞄准 100 kHz - 15 MHz 测量波段内的极光发射,这使得人们能够研究有趣的发射类型,例如极光千米辐射 (20 kHz -750 kHz)、中频爆发 (1.6 MHz - 4.4 MHz) 和回旋加速器发射 (2.8 MHz - 3.0 MHz)。 VS 天线从立方体卫星框架展开后,两端之间的距离为 4 米,并展开形成电偶极子和磁环天线,这些天线的灵敏度足以探测这组不同的科学目标。拥有太空平台(例如 AERO 的矢量传感器天线)可将探测器定位在电离层等离子体频率之上,否则会限制对无线电发射的观测。AERO VS 天线的新测量需要一组背景数据来验证所得数据产品的保真度。AERO 包括一个称为辅助传感器包 (ASP) 的辅助有效载荷,它将使用背景光学和磁数据增强 VS 测量。AERO 背景光学测量的目标是检测多个光谱带中极光发射的存在,即 557 nm 的绿线发射和 630 nm 的红线发射。选择 AMS AG AS7262 6 通道可见光波段光谱光度计作为光学传感器。我们提出了一个辐射测量模型,用于评估 AS7262 传感器测量目标极光事件的能力。我们考虑了许多不同的测试场景,包括不同的参数,例如以瑞利为单位的极光源辐射度、航天器
摘要。代谢活跃的大气微生物与云有机物的相互作用会改变大气碳循环。在沉积后,大气微生物会影响地表地面系统中的微生物社区。然而,定居栖息地中可耕种大气微生物的代谢活性尚不清楚。在这里,我们分别使用胰蛋白酶大豆肉汤(TSB)和Sabouraud Dextrose肉汤(SDB)培养了从城市气氛中分离出来的典型细菌和真菌,并研究了其外替代谢物以阐明其在生物地球化学周期中的潜在作用。使用超高分辨率傅立叶转化离子回旋共振质谱法分析外量代谢物的分子组成。通过基因和基因组数据库的京都百科全书的注释有助于证明代谢过程。结果表明,与消耗和耐药化合物相比,细菌和真菌菌株产生的外态代谢物具有较低的H / C和更高的O / C比。由于TSB(85%)和SDB(78%)的CHON化合物均丰富,因此Chon化合物也构成超过50%的识别型外替代谢物公式。细菌菌株产生了更多丰富的Chons化合物(25.2%),而真菌外代谢物富含CHO化合物(31.7%)。这些微生物外量代谢物主要包括脂肪族/肽样和富含羧基的甲基化合物分子(CRAM)样化合物。在不同的微生物菌株之间观察到代谢产物的显着变化。细菌在氨基酸合成中表现出促智度,而真菌则积极参与氨基酸代谢,转录和表达过程。脂质代谢,氨基酸代谢和碳水化合物代谢在细菌菌株之间差异很大,而真菌在碳水化合物代谢和继发代谢方面表现出显着差异。这项研究提供了有关大气微生物在空气和水界面上有机物的转化和潜在氧化能力的新见解。这些发现是评估云中大气微生物的生物地球化学影响或遵循其沉积的关键。