在众多量子计算模型中,量子电路模型是与当前量子硬件交互的最著名和最常用的模型。量子计算机的实际应用是一个非常活跃的研究领域。尽管取得了进展,但对物理量子计算机的访问仍然相对有限。此外,现有机器容易受到量子退相干导致的随机误差的影响,并且量子比特数、连接性和内置纠错能力也有限。因此,在经典硬件上进行模拟对于量子算法研究人员在模拟错误环境中测试和验证新算法至关重要。计算系统变得越来越异构,使用各种硬件加速器来加速计算任务。现场可编程门阵列 (FPGA) 就是这样一种加速器,它是可重构电路,可以使用标准化的高级编程模型(如 OpenCL 和 SYCL)进行编程。 FPGA 允许创建专门的高度并行电路,能够模拟量子门的量子并行性,特别是对于可以同时执行许多不同计算或作为深度管道的一部分执行的量子算法类。它们还受益于非常高的内部内存带宽。本文重点分析了应用于计算流体动力学的量子算法。在这项工作中,我们介绍了基于模型格子的流体动力学公式的新型量子电路实现,特别是使用量子计算基础编码的 D1Q3 模型,以及使用 FPGA 对电路进行高效模拟。这项工作朝着格子玻尔兹曼方法 (LBM) 的量子电路公式迈出了一步。对于在 D1Q3 晶格模型中实现非线性平衡分布函数的量子电路,展示了如何引入电路变换,以促进在 FPGA 上高效模拟电路,并利用其细粒度并行性。我们表明,这些转换使我们能够在 FPGA 上利用更多的并行性并改善内存局部性。初步结果表明,对于此类电路,引入的变换可以缩短电路执行时间。我们表明,与 CPU 模拟相比,简化电路的 FPGA 模拟可使每瓦性能提高 3 倍以上。我们还展示了在 GPU 上评估相同内核的结果。
摘要:近年来,量子计算 (QC) 在流体动力学模拟中的应用已发展成为一个动态研究课题。由于许多科学和工程领域中的流动问题需要大量计算资源,因此 QC 加速模拟和促进更详细建模的潜力成为这一研究兴趣日益增长的主要动机。尽管取得了显著进展,但在创建流体建模的量子算法方面仍然存在许多重要挑战。本文在基于格子的流体建模背景下研究了流体建模中控制方程的非线性这一关键挑战。详细介绍了 D1Q3(一维,三个离散速度)格子玻尔兹曼模型的量子电路以及涉及电路宽度和深度的设计权衡。然后,将设计扩展为非线性 Burgers 方程的一维格子模型。为了便于评估非线性项,所提出的量子电路采用量子计算基编码。本研究的第二部分介绍了一种用于多维晶格模型中非线性项的新型模块化量子电路实现。具体而言,详细介绍了二维模型中动能的评估,这是二维和三维格子玻尔兹曼方法碰撞项量子电路的第一步。量子电路分析表明,利用 O (100) 容错量子比特,可以在不久的将来进行有意义的概念验证实验。
