随着单细胞转录组的可用性不断提高,RNA 特征为靶向活细胞提供了有希望的基础。分子 RNA 传感器将能够在不同情况下研究和治疗干预特定细胞类型/统计数据,特别是在人类患者和非模型生物中。在这里,我们描述了一种使用作用于 RNA 的腺苷脱氨酶 (RADAR) 进行活体 RNA 传感的模块化和可编程设计。我们验证并扩展了我们的基本设计,表征了其性能,并彻底分析了其与人类/小鼠转录组的兼容性。我们还确定了进一步提高输出水平和改善动态范围的策略。我们表明 RADAR 是可编程和模块化的,并且独特地支持紧凑的 AND 逻辑。除了定量之外,RADAR 还可以区分与疾病相关的点突变。最后,我们证明 RADAR 是一个独立的系统,具有在各种生物体中发挥作用的潜力。
量子力学与技术的结合有许多前景,其中量子计算机可能是最引人注目的一个。尽管有这种说法,量子计算机尚未出现。原因是量子力学和技术存在相互竞争的要求。量子计算机的比特,即量子比特,可以同时具有值 | 0 ⟩ 和 | 1 ⟩,而传统计算机的比特要么是 0,要么是 1。这称为叠加。其次,量子比特是纠缠的,这意味着它们的值是相连的。量子计算机的优势在于纠缠和叠加的结合:所有量子比特同时执行复杂的计算,同时它们也同时具有所有可能的值。这使得量子计算机比传统计算机快得多。量子计算机中的量子比特应该用量子力学对象来实现,并且它们应该能够进行不受干扰的相干演化。换句话说,它们应该是轻的、冷的和孤立的。另一方面,硬件实现要求系统足够大,并与测量设备足够强地耦合。这种冲突非常普遍,来自不同物理学领域的各种解决方案都有不同的提案。例如,量子信息可以编码在分子中电子的各种自旋(NMR 方法)[96]、固态电子的自旋 [53] 或捕获离子的内部状态 [15] 中。但还有更多的提案 [44],包括一些乍一看非常奇特的提案,比如基于二维系统中 N 粒子配置拓扑的量子比特 [75, 8]。本篇论文研究了使用气相里德堡原子的状态作为量子比特的想法,这些原子是处于高度激发态的原子。量子计算机需要涉及多个量子位的运算,特别是 XOR 运算,这需要量子位之间的相互作用。相互作用的里德堡原子系统可以执行此任务,并且具有一些独特的优势:
印度尼西亚航空运输的发展:2024年印度尼西亚航空运输的乘客和货运运输的趋势在2024年期间经历了显着增长,其特征是乘客人数增加和运输商品的数量。这一趋势反映了邮政运动的恢复以及不断增加的贸易和旅游活动。这一增长表明,航空运输在支持国家经济增长,加强连通性和加速整个印度尼西亚商品分布方面的战略作用。
引言每年,美国天主教主教会议礼拜秘书处都会出版美国教区的礼仪日历。该日历供圣职人员和其他礼仪辅助材料的作者使用,以促进我国的礼仪庆典。该日历基于罗马通用历法,由教皇圣保罗六世于 1969 年 2 月 14 日颁布,随后经罗马教廷修订,以及美国天主教主教会议批准的美国教区适当日历。1 此日历已更新,以反映与罗马弥撒书第三版相符的各个礼仪日的名称和标题。罗马弥撒经书的一般训诫提醒我们,在全年的神圣礼仪中,在宣读和祈祷的循环中,“救赎的奥秘被庆祝,以便以某种方式呈现”。因此,愿本日历所服务的每一次圣体圣事庆典对美国教会来说都是“上帝在基督里圣化世界的行动和人类向圣父献上的崇拜的顶峰,通过上帝之子基督,在圣灵中崇拜他。”2
随着计算认知神经科学领域的不断扩展和新理论的产生,人们越来越需要更先进的方法来检验大脑行为关系的假设。贝叶斯认知建模的最新进展使得神经和行为模型能够结合成一个统一的框架。然而,这些方法需要手动提取特征,并且缺乏在更复杂的数据中发现以前未知的神经特征的能力。因此,这会阻碍模型的表现力。为了应对这些挑战,我们提出了一种神经认知变分自动编码器 (NCVA),将高维脑电图与认知模型结合起来,用于生成和预测建模分析。重要的是,我们的 NCVA 既可以根据行为数据预测脑电图信号,又可以根据脑电图信号估计认知模型参数。这种新方法可以让我们更全面地了解行为、大脑活动和认知过程之间的三重关系。
©作者2025。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问h t p p://c r e a t i v e c o m m o ns。or g/l i c e n s e s/b y/4。0/。Creative Commons公共领域的奉献豁免(H T P://C R E A T I V E C O M M M M M M M M O M M M M M O M M M O M M M O R G/P U B/P U B L I C D O M A I N/Z E R O/1。0/1。0/)适用于本文提供的数据,除非在该文章中提供的数据可用。
完成这篇论文并在国外进行研究是一次充满快乐、挑战、挫折、学习和成长的冒险。如果没有许多人的宝贵支持和合作,这一切都不可能实现。这项工作是我的推广团队、同事、朋友和家人共同努力、指导和鼓励的结果。首先,我要向 Renske DM Steenbergen 教授、Marc J. van de Vijver 教授和 Barbara C. Snoek 博士表示最深切的感谢,感谢他们在整个过程中给予我的坚定指导、专业知识和耐心。Renske ,作为我的研究导师和我生活中的荷兰“母亲”,您让我的旅程变得异常热情和支持。从您在机场接我的那一刻起,帮助我安顿下来,在新冠疫情期间为我找一辆二手自行车,到照顾您可爱的小猫,您创造了我将永远珍惜的经历。您对我的演讲和写作一丝不苟的反馈,以及无数小时的指导,都是无价的。感谢您给我机会攻读博士学位并继续在您的团队中担任研究员,让我拥抱一种我从未想象过的生活。Marc,感谢您在我的博士生涯中给予我的鼓励和支持。Barbara,您的指导和友谊至关重要。您在研究方面的指导起到了重要作用,您愿意分享您的专业知识,极大地丰富了我的工作。我特别感谢您在所有讨论中提供深思熟虑的反馈和克服挑战的实用解决方案。您的鼓励也给了我继续前进的信心。除了研究之外,您的热情和善良使这段旅程不仅易于管理,而且真正令人愉快。我还要向论文委员会表示衷心的感谢:Jan P. Medema 教授、Eric F. Eldering 教授、Lukas LJA Stalpers 教授Jacqueline Cloos、Zhi-Ming Zheng 博士和 Saskia M. Wilting 博士,感谢他们奉献自己的时间和专业知识来评估我的论文。我衷心感谢我的两个出色的同事 Annina van Splunter 和 Lijie Xu。Annina,带我参观医院、教我实验室技术、帮助我做实验、开车带我去海边、帮助我学习荷兰语写作和口语,我找不到比她更好的朋友和同事了。Lijie,我非常感谢我们之间的友谊。我们一起分享了无数快乐时光,共同面对挑战。旅行、烹饪,甚至是简单的陪伴,都让我在阿姆斯特丹的时光难以忘怀。致“Funky Pipette”团队:Angelina Huseinoviç 博士、Birgit MM Wever 博士和 Annelieke Jaspers,感谢你们成为如此出色的同事和伙伴。共同开展研究项目并指导实验的起起落落是一次有益的经历。我非常感谢你们的支持和建议,特别是在实验没有按计划进行的时候。我们的聚会一直是快乐的源泉。当然,我们的“Funky Pipette”团队在酒吧问答之夜给我的生活带来了许多欢笑和难忘的时刻。谢谢你们让我的旅程更加愉快。特别感谢 Birgit ,感谢你帮助我安定下来的无比善良,你的床保证了我 4 年的良好睡眠。当我遇到困难时,你的支持对我意义重大。
Kimberly M. Holter 1,博士; McKenna G. Klausner 1,BS;玛丽·亨特·海特(Mary Hunter Hite)1; Carson T. Moriarty 1,MS; Samuel H. Barth 1,博士; Bethany E. Pierce 1,MS; Alexandria N. Iannucci 1,BS;道格拉斯·J·谢弗勒(Douglas J. Sheffler)2,博士;尼古拉斯D.P. Cosford 2,博士; Heather A. Bimonte-Nelson 3,博士; Kimberly F. Raab-Graham 1,博士;罗伯特·W·古尔德(Robert W. Gould)1博士Kimberly M. Holter 1,博士; McKenna G. Klausner 1,BS;玛丽·亨特·海特(Mary Hunter Hite)1; Carson T. Moriarty 1,MS; Samuel H. Barth 1,博士; Bethany E. Pierce 1,MS; Alexandria N. Iannucci 1,BS;道格拉斯·J·谢弗勒(Douglas J. Sheffler)2,博士;尼古拉斯D.P.Cosford 2,博士; Heather A. Bimonte-Nelson 3,博士; Kimberly F. Raab-Graham 1,博士;罗伯特·W·古尔德(Robert W. Gould)1博士Cosford 2,博士; Heather A. Bimonte-Nelson 3,博士; Kimberly F. Raab-Graham 1,博士;罗伯特·W·古尔德(Robert W. Gould)1博士
摘要。小行星影响与挠度评估(AIDA)是NASA DART任务与ESA HERA任务之间的合作。目的范围是通过动力学碰撞研究小行星挠度。DART航天器将与Didymos-B碰撞,而地面站监视轨道变化。HERA航天器将研究影响后情况。HERA航天器由主航天器和两个小立方体组成。HERA将通过摄像头,雷达,卫星到卫星多普勒跟踪,LIDAR,地震测定法和重力法监测小行星。在本文中报道了LIDAR工程模型高度计Helena上的第一次迭代。Helena是一个TOF高度计,可提供时间标记的距离和速度测量值。LIDAR可用于在小行星导航附近的支持,并提供科学信息。Helena设计包括一个微芯片激光和低噪声传感器。这两种技术之间的协同作用使得可以开发一种紧凑的仪器,以达到14公里的范围测量。热力学和辐射模拟。该设计受到振动,静态和热条件的影响,并且可以通过结果结论,望远镜符合随机振动水平,静态负载和工作温度。
完全处方信息1指示DARZALEX用于治疗多发性骨髓瘤的成年患者:•在新诊断的已诊断出的患者中,与Lenalidomide和Dexamethasone结合使用,这些患者不符合自体干细胞移植和至少接受过一种先验治疗的复发性多发性多发性脊髓瘤患者的自体病患者。•与新诊断的患者中,与自体干细胞移植的新诊断患者结合了硼替佐米,Melphalan和泼尼松。•与有资格获得自体干细胞移植的新诊断患者中的硼替佐米,沙利度胺和地塞米松结合使用。•与至少接受过一种先前治疗的患者中的硼替佐米和地塞米松结合使用。•与Carfilzomib和Dexamethasone结合使用,患有复发或难治性多发性骨髓瘤的患者,他们接受了一到三个先前的治疗。•与至少接受过两种先前疗法在内的患者中的pomalidomide和Dexamethasone结合使用,包括Lenalidomide和一个蛋白酶体抑制剂。•作为单一疗法,在接受至少三个先前治疗的患者中,包括蛋白酶体抑制剂(PI)和免疫调节剂或对PI和免疫调节剂的双重磨难。2剂量和给药2.1重要给药信息•管理灌注前和输注后药物[请参阅剂量和给药(2.3)]。•在0.9%氯化钠注射稀释后仅作为静脉输注[见剂量和给药(2.5)]。•Darzalex应由医疗保健提供者管理,并立即获得紧急设备和适当的医疗支持,以管理与输注相关的反应(请参阅警告和预防措施(5.1))。•开始darzalex之前类型和屏幕患者[请参见警告和预防措施(5.2)]。