许多爱荷华州中部企业认为,多元化的员工队伍是他们的优势之一——将具有不同背景、种族和观点的爱荷华人聚集在一起——有助于他们取得业务成功。然而,这也会带来挑战。对于 Heritage Building Maintenance 来说,他们注意到几名讲西班牙语的员工不愿说英语,而一些讲英语的主管也难以有效地沟通某些事情。Heritage Building Maintenance 致力于帮助提高讲西班牙语的员工的技能,为他们创造晋升机会。在联系了 DMACC 商业资源 (DBR) 后,他们的业务顾问将他们与 DMACC 的综合教育与培训 (IET) 计划联系起来。
通过强光 - 膜相互作用产生激子 - 极性的产生代表了量子现象的新兴平台。基于胶体纳米晶体的极化系统的一个重大挑战是能够在室温下以高保真度操作。在这里,我们通过与Fabry-Pérot光腔的CDSE纳米片(NPL)偶联(NPLS)偶联,演示了室温的生成量 - 极光量。量子古典计算准确地预测了许多黑暗状态激子与光学允许的极化状态之间的复杂动力学,包括实验观察到的较低的北极星pho-To-To-To-To-To-To-To-To-To-To-To-Pho-To-To-Pho-To-To-To-Pho-To-To-To-Pho-To-To-Pho-To-To-To-To-To-To-To-To-To-To-To-Pho-To-To-Plo-To-To-Palliminencence浓度的浓度在较高的平面量较高时,随着蛀牙的越来越较大,较高的平面矩处的浓度。在5 K处测得的Rabi分裂与300 K时相似,从而验证了该极化系统的温度无关操作的可行性。总体而言,这些结果表明,CDSE NPL是促进室温量子技术发展的绝佳材料。
摘要 - 基于双介质DBR的双介电型微腔发光设备,它们制造了两个不同的结构,并研究了它们的热特性。为了改善热耗散,使用了比SIO 2高得多的热导率的ALN电流构造层和电镀铜散热器。设备的热电阻从923 k/w降至457 k/w,其中一半是用典型使用的SIO 2电流构造层和键合的底物获得的。这是带有双电介质DBR的基于GAN的微型腔发光设备中报告的最低值。温度分布和设备内部的热量。结果表明,沿垂直方向的热传输有效地绕过底部DBR到铜板。这项工作提供了一种有效的方法,可以改善具有双介电DBR结构的基于GAN的微型腔发光设备。索引项 - 微型腔发光设备,热量耗散,ALN电流配置层,电镀铜板。
a型光子晶体具有更高的折射率对比度的周期性调制,从而带来了独特的光子带隙。在这项工作中,通过有限差分时间域(FDTD)方法研究了薄膜硅太阳能电池的光学性能。分布的bragg repetor(dbr)和纳米词被整合为背面反射器,该反射器认可硅太阳能电池中的光子模式。由于较高的光谱区域吸收有限,光捕获方案在太阳能电池中起关键作用。为此,使用具有数值模拟的光子射线理论来研究各种硅太阳能电池结构,以更好地吸收光吸收。此结果表明与参考细胞相比,DBR和纳米射击的结合能力,并产生高度相对增强的59%,而参考细胞认可了Fabry-Perot共振和光伏设备中的指导模式。这些结果显示出具有增强光吸收的薄膜硅太阳能电池的希望。k eywords dbr,纳米摩擦,硅,薄膜,fdtd f或citation dubey R.S.,Saravanan S.在薄纤维硅太阳能细胞中分布的bragg的反射和纳米旋转的影响。纳米系统:物理。化学。数学。,2022,13(2),220–226。
图 1. 首次记录的 Tamm 等离子体 (TP) 观测结果:GaAs/AlAs DBR 的透射和反射光谱,覆盖有厚度为 [(a) 和 (b)] d=30 nm 和 [(c) 和 (d)] d=50 nm 的金层,拍摄温度为 [(a) 和 (c)] 300 K 和 [(b) 和 (d)] 77 K。圆圈和实线分别对应测量的反射和透射光谱;虚线和点线显示计算出的反射和透射光谱。细实线表示未被金覆盖的 DBR 的反射光谱。Δ 是与 TP 相关的光谱特征的半峰全宽。经 AIP Publishing 许可,转载自 Sasin 等人的《Appl. Phys. Lett.》,2008 年,92,251112;https://doi.org/10.1063/1.29524866。
图 1:片上集成环形谐振器装置。(a) 基于 DBR 波导 (WG) 的环形谐振器的艺术方案。单个量子点放置在 WG 的核心内,并从顶部进行光学激发。发射的光子从锥形外耦合器内结构的侧面收集。(b) 半径 R 为 10 µ m 的制造环形谐振器装置的扫描电子显微镜图像。(c) 带有标记层的 DBR WG 横截面。(d)、(f) 模拟的 Purcell 因子与能量的关系,其中外半径为 10 µ m,分别耦合到 0.2 µ m 宽度的总线 WG 以及 0 和 25 nm 的环形总线 WG 间隙。(e)、(g) 分别模拟了 0 和 25 nm 间隙结构中 QD 发射耦合到总线 WG 的效率。 25 nm 间隙环腔的非常高的品质因数 Q 要求将模拟光谱窗口限制在 20 nm。 (h) Purcell 因子与 Q 因子的关系取自图 1(d) 和 (f),揭示了基波 (点划线) 和高阶径向模式 (虚线) 的明显线性依赖性。
摘要 — 任务卸载决策在物联网 (IoT) 中的移动边缘计算 (MEC) 技术中起着关键作用。然而,在没有任何集中通信和计算协调的分布式多智能体网络中,它面临着来自应用层任务排队的随机动态和物理层耦合无线干扰的重大挑战。在本文中,我们研究了考虑上层排队动态和下层耦合无线干扰的分布式任务卸载优化问题。我们首先提出了一种新的优化模型,旨在通过优化多个智能体的卸载阈值来最大化它们的预期卸载率。然后,我们将问题转化为博弈论公式,进一步设计了一个分布式最佳响应 (DBR) 迭代优化框架。分析了博弈论模型中纳什均衡策略的存在性。对于每个代理阈值策略的单独优化,我们进一步提出了一种编程方案,将受约束的阈值优化转化为无约束的拉格朗日优化 (ULO)。单独的 ULO 被集成到 DBR 框架中,使代理能够以分布式方式协作并收敛到全局最优。最后,提供了模拟结果来验证所提出的方法,并证明了其相对于其他现有分布式方法的显著优势。数值结果还表明,所提出的方法可以实现与集中式优化方法相当的性能。
我们通过数值探索光子TAMM状态(OT),该光子结构由由纳米结构的金属层组成的光子结构(DBR)上方。评估了几种极化,发生率和模式的映射及其特性。然后,我们通过在金属图案下方添加钴层并切换其磁化强度来获得OT的磁控制。该控制在等离子原料中广泛使用,利用了横向磁光kerr效应(TMOKE)。该结构的模拟Tmoke signal的幅度为10-3,与常规的磁性结构相比,在金属条纹之间提供了高能量的结果。除了可以更好地访问分析物进入敏感区域的金属层开放外,这为在生物和化学感测应用中的敏感性较高的道路铺平了道路。
近年来,膜外腔发射激光器(MECSEL)取得了迅速发展。将进行历史介绍。该领域的发展进行了总结和讨论,并给出了艺术状况的概述。关键进步,例如激进设计简化,双侧抽水和扩展性能的能力,都起着重要作用。它还以缺乏集成的DBR和底物为灵活的泵送功能来讨论活性区域膜设计的最重要方面。具体来说,将讨论相对较厚的膜的光学泵送,并通过使用两种不同类型的量子井来优化针对非常宽的调谐范围优化的新设计的宽带结构的最新结果。将通过简短了解将该技术扩展到其他材料系统的未来总结。
光学多层薄膜结构是在许多应用中广泛使用的最重要的光子结构之一,包括结构颜色1,2,过滤器3,吸收剂4,分布式Bragg反射剂5,6(DBR),Fabry-Pérot7(fp)7(fp)储存器,Photovoltaic 8和photovoltaic 8和辐射式冷却9--其他9- 11- 11- 11-11,等等。逆设计旨在确定最佳的材料布置并获得厚度组合以实现用户呈现的光学目标,这对于启用上述许多应用程序至关重要。术语中,主流逆设计方法有两种类型:1)基于优化的方法12-16,它们依靠数值模拟和迭代搜索来微调设计和目标的光学响应之间的差异; 2)基于深度学习的方法17-23,该方法使用神经网络从目标响应的空间中学习了对光学空间的一般映射