关于Morningstar DBRS Morningstar DBRS是一家全球全球信贷评级业务,全球约有700名员工。我们是加拿大的市场领导者,在美国和欧洲的多个资产类别中。我们在全球范围内对4,000多名发行人和近60,000份证券进行评级,为金融机构,公司和主权实体以及结构化的金融产品和工具提供独立的信贷评级。市场创新者选择与我们合作,因为我们的敏捷性,透明度和技术前提方法。晨星DBRS正在授权投资者成功作为独立信用评级的首选来源。我们正在为行业带来透明度,响应能力和领先技术。这就是为什么Morningstar DBR是下一代信用评级的原因。在dbrs.morningstar.com上了解更多信息。
FTE Agency Change GR FF RR Other Total DOA 3.0 - $267,826 $157,452 - $425,278 DBR 2.0 - - 253,063 - 253,063 Treasurer 1.0 191,119 - - - 191,119 Human Rights 1.0 129,090 - - - 129,090 Housing 6.0 673,164 - - - 673,164 EOHHS 11.0 696,972 707,804---1,404,776 dcyf(1.0)(1.0)(186,500)(186,500) - (186,500)doh 1.0-154,300-154,300-154,300 -154,154,300 dhs 6.0 587,262 56,262 56,262 56,33,33,333,333,333,33,333,33,333,33,33,33,333,33,33,33,33,333,33,333,33,33,33,33,33,33,33,33,33,333 bhnd 131,970 - - - 131,970 Child Advocate 12.0 1,238,439 - - - 1,238,439 RIDE 2.0 335,308 - - - 335,308 RIC 8.0 1,133,966 - - - 1,133,966 CCRI 7.0 763,100 - - - 763,100 URI 40.0 4,800,000 - - - 4,800,000 OPC 12.0 --- TBD TBD艺术委员会1.0 63,899 70,777-134,676 AG 13.0 1,700,000----1,700,000司法4.0 349,435-122,553-122,553-471,988 RIEMA RIEMA RIEMA RIEMAL 4.0 518,770 -----518,770 CRMC 5.0 735,000--- 735,000总计140.0 $ 13,860,994 $ 1,209,993 $ 687,368- $ 15,758,355
Algainp材料技术在过去几年中一直在稳步发展,从而导致高性能的边缘发射激光〜EEL!1和红色的垂直腔表面发射激光器〜VCSEL!。2,3相对于Algainp系统,藻类受益于改进的指数对比度,降低的电阻和热电阻率,更成熟的加工技术,以及将碳用作p-型掺杂剂的能力,以实现出色的掺杂剂控制和稳定性。4然而,将基于ALGAINP的活性区与基于C的基于藻类的DBR集成是通过较差的载流子转运到AlgaInp活性区域的困难,并且无法将C用于Algainp合金中的P进行P。先前关于Algainp/ Algaas异质结构激光二极管的报道已在连接处的P侧使用Zn或Mg掺杂,以改善孔注射,5,6消除了使用藻类使用的潜在关键优势,并进一步使穿着物质扩散特征复杂化。7,8此类困难导致实施相对较厚〜8 L!红色VCSELS中的光腔6
光伏应用中的光学操控方法主要可分为光谱控制和光学设计。通过控制各种共轭分子或钙钛矿的带隙,可以制造出色彩鲜艳或高度透明的装置,用于建筑一体化光伏应用。[2,8,9] 使用薄金属电极(< 20 纳米)和主要收集紫外线 (UV) 和近红外 (NIR) 光的活性层,可以得到高性能半透明光伏 (ST-PV)。[10 – 17] 新结构与低带隙活性层材料的集成,可以提供高性能可见光透明 OPV。[18 – 24] 例如,Yang 等人使用薄 Au/Ag 电极和透明空穴传输框架策略,展示了一种 ST-OPV,其 PCE 为 12%,平均可见光透射率 (AVT) 为 20%。 [25] 多种光捕获方法,包括加入抗反射层 [26,27]、微腔 (MC) 结构 [28]、分布式布拉格反射器 (DBR) 和光子晶体 (PC) [29,30] 以及纳米结构 [31,32],进一步优化了此类设备的光收集和光学响应。Shen 及其同事回顾了 MC 在 OPV 中的应用,[28]
摘要:世界卫生组织旨在到2025年停止糖尿病的兴起,而饮食是最有效的非药理学策略之一。白藜芦醇(RSV)是具有抗糖尿病特性的天然化合物,将其纳入面包是一种使消费者更容易获得的方法,因为它可以作为日常饮食的一部分。这项研究旨在评估富含RSV的面包在预防早期2型糖尿病心肌病体内的影响。雄性Sprague Dawley大鼠(3周大)分为四组:带有普通面包(CB)和RSV面包(CBR)的对照,以及带有普通面包(DB)和RSV面包(DBR)的糖尿病患者。2型糖尿病是通过在饮用水中添加果糖两周,然后注射链霉菌素(STZ)(40 mg/kg)来诱导的。然后,在大鼠的饮食中包括四个星期的大鼠饮食中包括普通面包和RSV面包(10 mg RSV/kg体重)。心脏功能,人体测量学和全身生化参数,以及再生,代谢和氧化应激的心脏和分子标记的组织学。数据表明,RSV面包饮食降低了疾病早期观察到的多次多次体重减轻。在心脏水平上,RSV面包饮食减少了纤维化,但没有抵消果糖喂养的STZ大鼠的功能障碍和代谢变化。
简介。单光子源对量子计量学[1]的应用至关重要,安全量子通信[2]和光学量子计算[3,4]。在固态设备中,可以构造局部光子环境,以将光子的有效集合促进透镜。这可以通过将发射抑制到不需要的方向上,例如在光子晶体[5,6]中,或通过将发射促进到单个模式中,以使远距离的光学材料(例如纳米坦纳)很好地耦合到单个模式[7,8]。这些结构的数值设计通常集中在高质量因子的局部“腔”模式上,因为这些模式显示出明显的初始衰减,并且可以使用较小的仿真量进行计算,从而在实用的运行时进行计算。模拟无法预测频谱广泛,重叠的非腔(通常称为“泄漏”)模式,并且很难从数值差异时间域(FDTD)和限制元素方法(FEM)模拟中提取。了解这些非腔衰减通道的作用对于完全理解光子源行为至关重要,因为它们提供了替代性辐射衰减通道。有效地生成单个光子的流行设计将半导体量子点(QD)嵌入整体微骨腔中[9-11]。在脱离的bragg重新反射(DBR)之间形成DBRS停止带中的空腔模式,并通过将平面结构刻在支柱中来确定侧模式。QD通常是
US 11,016,119 B1 1 2 MONOLITHIC ATOMIC FORCE In view of the above problems , we proposed a novel class MICROSCOPY ACTIVE OPTICAL PROBE of probes for atomic force microscopy ( AFM active optical probe - AAOP ) by integrating a laser source and a photo CROSS REFERENCE TO RELATED detector monolithically into the AFM probe [ Actoprobe APPLICATIONS 5 2015 ] .AAOPS被设计为在召开AFM中使用,以通过包括本申请的索赔优先级和优先级来增强其功能,以上提到的仪器(NSOM,TERS,TERS,混合访问应用程序编号62 / 415,097于2016年10月31日提交,AFM)。 这些独特的光学探针的设计是根据整个披露,通过形式的传统AFM探针和参考。 10添加,同时提供有关纳米级样品的Opti cal特性的信息。 本发明概念的AAOP领域是基于单次结合二极管激光器和AFM探针的基础。 AAOP被设计为本发明与AFM显微镜和空腔探针有关的,即,AFM探针尖端是激光接近 - 场光学显微镜探针的一部分,尤其是15个腔。 AAOP由基于GAA的悬臂组成,其单片AFM活动光学探针能够执行安装在常规SI芯片上的AFM探针。 传统的AFM测量和光学成像,尽管在技术上可行,但纳米级的GAAS / SI杂交和光谱法。 硅,im和GAAS。 (DBR)镜子。62 / 415,097于2016年10月31日提交,AFM)。这些独特的光学探针的设计是根据整个披露,通过形式的传统AFM探针和参考。10添加,同时提供有关纳米级样品的Opti cal特性的信息。本发明概念的AAOP领域是基于单次结合二极管激光器和AFM探针的基础。AAOP被设计为本发明与AFM显微镜和空腔探针有关的,即,AFM探针尖端是激光接近 - 场光学显微镜探针的一部分,尤其是15个腔。AAOP由基于GAA的悬臂组成,其单片AFM活动光学探针能够执行安装在常规SI芯片上的AFM探针。传统的AFM测量和光学成像,尽管在技术上可行,但纳米级的GAAS / SI杂交和光谱法。硅,im和GAAS。(DBR)镜子。提出了严重的问题,可能会影响由于具有不同热膨胀常数的材料的粘结背景而产生的应变,即纳米级的光学表征当前需要NSOM(发明光学显微镜的接近 - 现场扫描摘要),TERS(TIP-增强的Raman Spectros副本)或Hybrid AFM(其中包括专门的FAR -FAR -FAR -FAR -FIEL -FIELD -FIELD 25本发明的对象都提供新型的光学显微镜)。class of probes for atomic force microscopy ( monolithic Attempts at integrating atomic force microscopy and AFM active optical probeML AAOP ) by integrating a optical techniques have already been made and several laser source and a photodetector monolithically into the products based on these schemes have found their way into AFM probe , based entirely on GaAs or similar lasing the market .可商购的,具有Inte-30材料的AFM尖端,从而避免使用有害的GAAS / SI杂化片状波导(空心尖端)。带有外部激光源[Celebrano 2009]。本发明构成了一种制造成本方法的方法,其固有的局限性就整体,集成的光学AFM探针而言。可以传递的最广泛的光学分辨率和光功率。用于原子力显微镜的使用的探针被制造得可实现高侧分辨率使用硅技术的接近磁场35的大小。此方法有限作为光学设备制造的基础。相比之下,ML AAOPS是孔需要减少的,因此导致完全由GAAS制造的指数,半导体材料的光电输出减少。具有最终分辨率和检测器功能的近距离显微镜的激光应用可以通过大约50 nm的外延生长来实现,但不适用于光学结构。边缘 - 发射激光二极管,轻度指南和EFFI光谱,由于功率输出较小。40个满足的光电探测器是通过对旨在更好地整合光区域(Epi-层)的活跃的其他方法来制造的,而AFM尖端是用源和AFM尖端制造的,通常涉及将特殊成长的GAAS外部外在过度层层附加到一个预先制动的光源(Edge Expriced semitter,vcse)的顶部(vcse vcse sepge a veriide a cert a py a veriide a cert a c。 AFM Cantilever探针(混合方法)[Bargiel Epi-激光结构的层。GAAS的选择是2006年,Kingsley 2008]或光源45的制造,直接在AFM尖端上直接在AFM尖端上建立的制造技术的基础[Heisig 2000a,Heisig,Heisig 2000b,nology,nology,允许时间和成本 - 有效的制造 - 有效的制造Hoshino Hoshino Hoshino 2008,Hoshino 2009,Hoshino 2009]。在这些情况下,探针的光学。本发明的实践很容易被探测到探针中。成本 - 有效地使它们负担得起,以实现本发明的说明性体现,即Tific社区。是在AFM尖端制造的激光波长[AN 2008]。杂种扩展到替代III -V半导体,例如INP,方法仅显示在研究实验室和GAP,GAP,GAS和GAN中起作用,以扩大可用的波长,很难想象如何将光学探针从UV到可见的和Mid -Midrared制造50个覆盖率。此外,在激光腔中常用的VCSEL由两种分布式bragg反射器定义,这种方法的光输出功率受到限制。第一个激光镜是标准的第一阶 - 另外,单个集成的光电视也具有dbr光栅(周期 / 2ng,其中h。< / div>光电探测器-55和NEF是仅GAAS波的有效折射率[AN 2008]不能解决指导的困难),该指标可确保将光源对齐在AFM尖端上的激光单个纵向模式,并进行要求。第二激光镜是降低检测器尺寸的第二个订单DBR,以实现位于悬臂末端的空间光栅(周期为n / neft)。IT分辨率直接与将用作用作折叠镜的要求矛盾,该镜子将光线(以获得高60 AVITY激光模式获得的最大可能的检测区域)垂直地进入Nansoscale上光学上的灵敏度水平的AFM尖端中。具有集成的LED光源和Pho-Ridge波导的AFM尖端顶部的特殊生长的GAA外延层层。尖端探头,光源(GAAS LED)被简单地粘在65本身上,是扮演悬臂芯片作用的总内反射棱镜。因此,激光产生的光已证明是todeTector [Sasaki 2000],但是虽然将耦合到GAAS探针的表面模式(锥形光电探测器(锥形光电探测器)中)并转移到尖端顶点。这不足以满足需求 - 输出镜,第三镜,在激光腔中。高功率,单波长操作的精神。GAAS微型 - 棱镜将激光光引导到尖端顶点和
集成的布拉格光栅无处不在,在光学通信中找到了他们的主要应用。它们主要用作波长划分多路复用(WDM)的过滤器[1]。它们在激光器中用作分布式Bragg反射器(DBR)[2]和分布式反馈(DFB)激光器[3]的镜子。他们还找到了他们在传感中的应用[4]。此外,它们是集成腔分散工程的重要组成部分[5,6]。集成的Bragg反射器已使Fabry-Pérot(FP)微孔子中有趣的表演达到了实现。仔细研究这些空腔,对分散补偿策略的兴趣不大,例如,将分散元素补偿元素在空腔体系结构中[5]进行了整合。使用色散bragg反射器证明了综合微孔子中的耗散kerr孤子(DKSS)[7]。通常需要这些光源来产生非常短的脉冲持续时间,即飞秒级,用于高精度计量学级的飞秒源的应用,并用于产生跨越频率的宽带频率梳子,这些频率从数十吉赫赫兹到Terahertz。这种非线性机制开辟了增加相干光学通信系统带宽[8,9]的可能性,以满足增加的数据速率需求。最近,由两个光子晶体谐振器组成的Q-因子为10 5的纳米制作的FP谐振器已成功证明了KERR频率 - 兼而产生[10]。这个概念是在反射器的背景下进行分析描述的。因此,在FP微孔子中,布拉格反射器的广泛采用以进行分散补偿变得越来越重要。虽然用作反射器的Bragg光栅提供了广泛的功能,但设备物理学中存在一个潜在的问题。当光反射器反射光时,它不会从光栅开始的点上进行反映。为了解决这个问题,研究人员检查了渗透深度的概念或闪光的有效长度,称为l eff。该术语是指定义实际反射点的bragg反射器内的虚拟移位接口。
电子邮件:bedouin.sassiya@uni-ulm.de互联网流量的快速增长导致对高通量,低能光学互连的需求显着增加,尤其是在数据中心。氧化物构造的垂直腔表面发射激光器(VCSEL)由于其高带宽,电磁效率,可扩展性和可靠性而变得至关重要[1]。今天,100 GBIT/S PAM4 850 nm VCSEL可商购。为了进一步提高光学互连性能,使用VCSELS [2]使用短波长度多路复用(SWDM)。通过将850、880、910和940 nm的四个不同的波长取代,数据传输速率可以四倍。目标是每波长达到100 Gbit/s,将总传输速度提高到400 GBIT/s。为每个波长设计VCSEL需要仔细考虑和调整。设计区域的活动区域,量子井和屏障材料之间的不同之处在于优化的机会。此外,必须针对分布式bragg反射器(DBR)中的铝对比度和浓度定制,以解释各种波长的吸收。这些设计变化及其含义将进行详细讨论。关键挑战是在所有波长中保持一致的性能。这包括动态特征,例如相对强度噪声(RIN),共振频率和阻尼,以及静态特性,例如量子效率,阈值电流和温度稳定性。要应对这些挑战,快速反馈循环至关重要。为了解决这个问题,已经开发了一种快速的处理技术,可以在一周内处理VCSEL,与典型的RF加工VCSELS的典型3到4个月的时间范围相比。尽管修饰的芯片设计排除了RF表征,但该方法对于评估静态性能指标(例如静态性能指标,温度稳定性,电阻,电压,光谱,光谱,阈值电流,量子效率和功率vs. cur- cur-cur- cur- cur- cur- cur- slope)非常有效。图1显示了快速地段和RF加工设备之间的比较,证明了它们的相似性并验证了新过程的可靠性。
该公司拥有最全面的雷达产品组合之一,涵盖 ka 波段、X 波段、C 波段和 L 波段。广泛的产品组合意味着客户可以找到完美适用于特定应用的雷达,无论是导航、空中和水面监视、跟踪还是超视距扫描。凭借其多功能能力,该系列雷达可以满足最苛刻的要求。对于沿海监视,SPS-732 在 X 波段运行,范围超过 180 公里。这种 2D 多用途雷达可以安装在中小型水面战斗舰艇上,以履行各种作战职责。凭借其新功能,包括连续变焦、LPI 能力和 ISAR 分析,它目前是水面监视雷达的最新技术。对于 400 总吨及以上的水面战斗舰艇,可以在船上安装 KRONOS® NAVAL HP。 KRONOS NAVAL HP 采用 C 波段有源电子扫描阵列 (AESA) 技术,是市场上唯一一款天线组重量不到 1000 公斤的多功能雷达。KRONOS NAVAL High Power 能够提供更高的测距性能。同样属于 KRONOS 系列的 KRONOS® GRAND NAVAL 是一款多功能 AESA 雷达,是重型水面战舰主要防空导弹系统的主要资产。KRONOS GRAND NAVAL 的应用包括扩展自卫和区域保护、空中和海上监视、多目标跟踪、体积搜索和多枚主动导弹制导。在预警方面,L 波段多功能全数字 AESA 雷达 KRONOS® POWERSHIELD 的探测范围可达 1500 公里。它可以为水面战舰提供增强的反战术弹道导弹 (ATBM) 能力,最高预警能力可达 TBM600 和 TBM1300。莱昂纳多公司生产的最新、功能更强大的多任务多功能雷达是 KRONOS® DBR(双波段雷达)。它是一种性能顶级的固定面 C 波段和 X 波段解决方案,不仅能够提供标准的 AESA 3D 空中和地面监视和跟踪,还能提供针对 TBM600 目标的 ATBM 功能、导弹制导、上行链路和火控系统功能。SIR-M 系列雷达从简单的紧凑型到复杂的架构,可以集成旋转或固定面/保形天线,是市场上最全面的 IFF 解决方案,再加上莱昂纳多 IFF 转发器和最高可达模式 5 和 S 的询问器。PAR720 是最常用的精密进近雷达之一,安装在意大利和出口的航空母舰上。