57,Old Meher Singh Colony,Tripuri,帕蒂亚拉,旁遮普省,德里公立学校帕蒂亚拉,12 年级摘要癌症的重大医学挑战凸显了创新解决方案的紧迫性。当代免疫疗法面临着处理免疫逃避、复杂肿瘤微环境 (TME) 和检查点抑制剂的艰巨挑战。通过使用 Cas9 系统的基因组编辑对免疫疗法进行了改进,但它对 DNA 修复机制的依赖以及较高的脱靶效应带来了局限性。基因编辑的一种替代方法是使用 dCas9 和相关效应物调节基因表达。一个优点是 dCas9 的非切割性质,这降低了脱靶效应的机会并避免了基因组的永久性改变,从而作为基因调节工具提供了增强的安全性。我们回顾了正在进行的免疫疗法、基因表达和 dCas9 研究和临床试验,以探讨通过 dCas9 进行基因调节是否是改善基因治疗的可行解决方案。在(一项/几项)研究中发现,dCas9 的采用减少了脱靶效应,与使用 Cas9 的传统基因编辑相比,其在改善免疫疗法方面的吸引力更大。因此,将 dCas9 整合到抑制关键靶基因中,dcas9 与效应域或表观遗传修饰因子一起可以证明是一种关键策略,可以实现精确的基因调控和表观遗传修饰。具体而言,转录激活因子(如 VP64)和抑制剂(如 KRAB)与 dcas9 一起使用时具有调节靶基因的潜力。这项研究承认存在一些局限性,例如影响基因调控的突变,强调了 dCas9 介导的表观遗传调控在重塑癌症治疗格局方面的变革潜力,并呼吁进一步研究以释放其全部治疗潜力。关键词:dcas9、表观遗传学、效应域、免疫疗法、癌症 简介:癌症仍然是现代医学的主要挑战之一,影响着全球数百万人的生命,并带来了巨大的健康和社会经济负担。异常细胞的不断生长和扩散是癌症的标志,它继续困扰着研究人员和临床医生。尽管在癌症研究和治疗方面取得了长足进步,但与这种复杂疾病的斗争还远未结束。虽然癌症免疫治疗领域取得了重大进展,但局限性阻碍了其有效性。癌症免疫疗法是治疗各种恶性肿瘤的一种有效方法,这种治疗策略旨在刺激或调节免疫反应,使免疫系统更有效地识别和消除异常细胞、病原体或功能失调的成分,最终有助于改善健康结果。检查点抑制剂、受免疫相关基因影响的抑制性肿瘤微环境、由于基因表达改变导致的 CAR-T 细胞治疗效率降低 [1]、由于 DNA 修复机制导致的 CRISPR 错误 [2] 都是
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2021 年 12 月 16 日发布。;https://doi.org/10.1101/2021.12.16.472942 doi:bioRxiv preprint
不同细胞群体的位点特异性遗传和表观遗传靶向是分子神经科学的核心目标,对于理解基因调节机制至关重要,这些基因调节机制是基于复杂的表型和行为的基础。虽然最近的技术进步已经实现了对基因表达的前所未有的控制,但其中许多方法都集中在选定的模型生物上和/或需要针对不同应用的劳动密集型定制。群集定期插入短质体重复序列(基于CRISPR)的系统的简单性和模块化已改变了基因组编辑并扩展了基因调节工具箱。但是,几乎没有可用于神经元细胞选择性CRISPR调节的工具。我们设计,验证和优化的CRISPR激活(CRISPRA)和CRISPR干扰(CRISPRI)系统用于CRE重组酶依赖性基因调节。出乎意料的是,基于传统的双流传式开放阅读框(DIO)策略的CRISPRA系统即使没有CRE也会显示出漏水的靶基因诱导。因此,我们开发了一种含有内含子的CRE依赖性CRISPRA系统(SVI-DIO-DCAS9-VPR),该系统减轻了泄漏基因诱导,并在HEK293T细胞和大鼠原发性神经元培养物中的内源基因上的传统DIO系统表现优于传统的DIO系统。使用基因特异性CRISPR SGRNA,我们证明了SVI-DIO-DCAS9-VPR可以以CRE特异性方式激活许多大鼠或人类基因(GRM2,TENT5B,FOS,SSTR2和GADD45B)。为了说明该工具的多功能性,我们创建了一个平行的CRISPRI构建体,该构建体仅在CRE存在下仅在HEK293T细胞中成功抑制了荧光素酶报告器的表达。这些结果为跨不同模型系统的CRE依赖性CRISPR-DCAS9方法提供了强大的框架,并在与常见的CRE驱动线或通过病毒载体交付时实现了细胞特异性靶向。
遗传物质的表达控制大脑发育,分化和功能,以及对基因表达的有针对性操纵以了解基因功能对健康和疾病状态的贡献。尽管CRISPR/DCAS9干扰(CRISPRI)技术的最新改进已使在选定的基因组站点的有针对性的转录抑制作用,但将这些技术集成到非分散神经元系统中仍然具有挑战性。以前,我们优化了双性能病毒表达系统,以表达有丝分裂后神经元中的基于CRISPR的激活机制。在这里,我们使用了类似的策略来适应改进的DCAS9-KRAB-MECP2抑制系统,以用于神经元中的鲁棒转录抑制。我们发现,由神经元选择性的人突触素启动子启用的dcas9-krab-MeCP2构建体启用了初级大鼠神经元中的转基因表达。接下来,我们使用靶向多种基因启动子的CRISPR SGRNA证明了转录抑制作用,并与现有的RNA干扰方法相比,在复杂的脑源性神经营养因子(BDNF)基因上,该系统在神经元中表现出了优越性。我们的发现前期提高了这项改进的CRISPRI技术,以在神经元系统中使用,从而有可能提高了在神经系统中操纵基因表达状态的能力。
确实有效。使用基于DCAS9(PDA2),DCAS9-VP64(PDA3)或DCAS9-SRDX(PDA4)载体的CRISPRA/CRISPRI原生质体系统,我们测试了前四个GRNA候选者的有效性,靶向PDS1,CHLH和TRXH和TRXH,FICE(FICE)和3和TRXH,FICE(FICE)和3(FICE)2及3次。与其他关于DCAS9活性的报道类似,我们观察到PDA2在CHLH表达上表现出一些抑制活性(图3A),尽管对于某些GRNA,PDA4的幅度较大(图3B)。用PDA3(CRISPRA构建体)测试,表明TRXH表达增加了两倍,具体取决于GRNA共转染了哪个GRNA(图3C)。这项研究中观察到的GRNA之间的有效性不同,重申了测试多个候选物的必要性。
Zhang, K., Chooi, W. H., Liu, S., Chin, J. S., Murray, A., Nizetic, D., ... Chew, S. Y. (2020)。通过纳米纤维上的逐层自组装肽涂层局部递送 CRISPR/dCas9 用于神经组织工程。生物材料,256,120225‑。doi:10.1016/j.biomaterials.2020.120225
对不同细胞群体进行位点特异性遗传和表观遗传靶向是分子神经科学的核心目标,对于理解复杂表型和行为背后的基因调控机制至关重要。虽然最近的技术进步使对基因表达的控制达到了前所未有的程度,但其中许多方法都集中在选定的模型生物上和/或需要针对不同应用进行劳动密集型定制。基于 CRISPR 的系统的简单性和模块化已经改变了基因组编辑的这一方面,提供了各种可能的应用和目标。然而,目前很少有可用于神经元中细胞选择性 CRISPR 调控的工具。在这里,我们设计、验证和优化了 CRISPR 激活 (CRISPRa) 和 CRISPR 干扰 (CRISPRi) 系统,以实现 Cre 重组酶依赖性基因调控。出乎意料的是,基于传统双链倒置开放阅读框 (DIO) 策略的 CRISPRa 系统在没有 Cre 的情况下表现出泄漏的靶基因诱导。因此,我们开发了一种内含子 Cre 依赖性 CRISPRa 系统 (SVI-DIO-dCas9-VPR),该系统可缓解泄漏基因诱导,并且在 HEK293T 细胞和大鼠原代神经元培养物中,其在内源基因方面的表现均优于传统 DIO 系统。使用基因特异性 CRISPR sgRNA,我们证明 SVI-DIO-dCas9-VPR 可以以 Cre 特异性方式激活高度可诱导基因 (GRM2、Tent5b 和 Fos) 以及中等可诱导基因 (Sstr2 和 Gadd45b)。此外,为了说明此工具的多功能性,我们创建了一个平行的 CRISPRi 构建体,仅在存在 Cre 的情况下,它才成功抑制了 HEK293T 细胞中荧光素酶报告基因的表达。这些结果为不同模型系统中的 Cre 依赖性 CRISPR-dCas9 方法提供了一个强大的框架,并且当与常见的 Cre 驱动线或通过病毒载体进行 Cre 递送相结合时,将实现细胞特异性靶向。
Shiri Levy、1,2 Logeshwaran Somasundaram、1,2 Infencia Xavier Raj、1,2 Diego Ic-Mex、1,2 Ashish Phal、1,3 Sven Schmidt、1,2,17 Weng I. Ng、1,2 Daniel Mar、1,4 Justin Decarreau、2,5,6 Nicholas Moss、1,7,8 Ammar Alghadeer、1,9,10 Henrik Honkanen、1,2,18 Jay Sarthy、11,12 Nicholas Vitanza、13,14 R. David Hawkins、1,7,8 Julie Mathieu、1,15 Yuliang Wang、1,16 David Baker、2,5,6 Karol Bomsztyk、1,4 和 Hannele Ruohola-Baker 1,2,3,8,9,19, * 1 研究所华盛顿大学医学院干细胞与再生医学,美国华盛顿州西雅图 98109 2 华盛顿大学医学院生物化学系,美国华盛顿州西雅图 98195 3 华盛顿大学医学院生物工程系,美国华盛顿州西雅图 98105 4 华盛顿大学医学系、过敏和传染病科,美国华盛顿州西雅图 98195 5 华盛顿大学蛋白质设计研究所,美国华盛顿州西雅图 98195 6 华盛顿大学霍华德休斯医学研究所,美国华盛顿州西雅图 98195 7 华盛顿大学医学院医学系医学遗传学分部,美国华盛顿州西雅图 98195 8 华盛顿大学医学院基因组科学系,美国华盛顿州西雅图 98195 9 华盛顿大学牙科学院口腔健康科学系, WA 98109,美国 10 伊玛目阿卜杜勒拉赫曼·本·费萨尔大学牙科学院生物医学牙科科学系,沙特阿拉伯达曼 31441 11 弗雷德·哈钦森癌症研究中心基础科学部,华盛顿州西雅图 98109,美国 12 西雅图儿童医院癌症和血液病中心,华盛顿州西雅图 98105,美国 13 西雅图儿童研究所本·汤恩儿童癌症研究中心,华盛顿州西雅图,美国 14 华盛顿大学儿科系儿科血液学/肿瘤学分部,华盛顿州西雅图,美国 15 华盛顿大学比较医学系,华盛顿州西雅图 98195,美国 16 华盛顿大学保罗·G·艾伦计算机科学与工程学院,华盛顿州西雅图 98195,美国 17 现地址:尤利乌斯·马克西米利安斯·维尔茨堡大学,维尔茨堡 97070,德国 18 现地址:卡罗琳斯卡医学院学习、信息学、管理和伦理学系,斯德哥尔摩 17177,瑞典 19 主要联系人 *通信地址:hannele@u.washington.edu https://doi.org/10.1016/j.celrep.2022.110457
摘要:Cas9(DCAS9)核酸内切酶的催化无效突变体具有多种生物医学应用,最有用的是转录的激活/抑制。dcas9家族成员也正在成为潜在的实验工具,用于在独立活细胞和完整组织的水平上进行基因映射。我们对CAS9介导的核室可视化的一组工具进行了初步测试。我们研究了doxycycline(DOX) - 可诱导(TET-ON)的细胞内分布,这些构建体的构造中编码DCAS9直系同源物(ST)(ST)和脑膜炎N.脑膜炎(NM)与EGFP和MCHERRY FOLORESCENT蛋白(FP)融合的人类A549细胞。我们还研究了这些嵌合荧光构建体的时间依赖性表达(DCAS9-FP)在活细胞中诱导中的诱导中,并将其与实验性DCAS9-FP表达的时间过程进行了比较灌注。在诱导后24小时内,肿瘤异种移植物发生了麦克利 - 奇氏菌表达的体内诱导,并通过使用皮肤的光学清除(OC)来可视化。OC通过局部应用Gadobutrol启用了肿瘤异种移植物中FP表达的高对比度成像,因为红色和绿色通道的FI增加了1.1-1.2倍。
需要快速,特定和可靠的诊断策略来开发用于小分子检测的敏感生物传感器,这可能有助于控制污染和疾病传播。最近,利用了目标诱导的CAS核酸酶的侧支活性[定期插入的短篇小语重复序列(CRISPR)相关的核酸酶]来开发用于检测核酸和小分子的高吞吐量诊断模块。在这里,我们通过开发Bio-Scan V2来扩展CRISPR-CAS系统的诊断能力,这是一个用于检测非核酸小分子靶标的配体反应性CRISPR-CAS平台。生物扫描V2由工程化的配体反应SGRNA(LIGRNA),生物素化死亡CAS9(DCAS9- Biotin),6-羧基流氟氨基酶(FAM) - 标记的扩增子和侧面流量测定(LFA)strips。ligrna仅在sgrna-特异性配体分子的存在下与DCAS9-biotin相互作用以形成核糖核蛋白(RNP)。接下来,将配体诱导的核糖核蛋白暴露于被标记的扩增子进行结合,并检测到配体(小分子)的存在为视觉信号[(DCAS9-biotin) - ligrna-fam-fam标记的DNA-aunp Complection]在侧面效果的测试线上。使用Bio-Scan V2平台,我们能够在短时间内以高达2μm的检测限(LOD)检测模型分子Theophiphline,只需15分钟即可从样本应用到视觉读数。在一起,生物扫描V2分析为茶碱提供了快速,特定和超敏感的检测平台。
