2019 1。Cunningham-Bryant,D.,Sun,J.,Fernandez,B。和Zalatan,J.G。CRISPR-CAS介导的酵母转录动力学的化学控制。Chembiochem。6月14日; 20(12):1519–1523。应用:使用GRNA与MS2结构域的诱导CRISPRA募集包含融合到诱导型激活剂和DCAS9的MS2外套蛋白的复合物。2。Taghbalout,A。等。通过Casilio-Me介导的RNA引导的甲基胞苷氧化和DNA修复途径的RNA引导的偶联增强了基于CRISPR的DNA去甲基化。自然通讯。10(4296)。doi.org/10.1038/S41467-019-12339-7应用:使用具有MS2结构域的GRNA,DCAS9,DCAS9和MS2涂层蛋白融合到DNA脱甲基化结构域。3。Tran,N.T。等。通过Cas9与同源重组因子的关联增强精确基因编辑。遗传学的前沿。10(365)。doi:10.3389/fgene.2019.00365应用:使用具有MS2域的GRNA以及Cas9和MS2涂层蛋白融合到同源性修复(HDR)的增强子。
该系统包含 3 个组件,它们在转染到细胞中后会形成 DNA 结合复合物。第一个组件是与转录激活因子 VP64 融合的 dCas9(死 Cas9,内切酶活性丧失),通常由四个串联的 VP16 拷贝(单纯疱疹病毒蛋白 16,氨基酸 437-447)组成。其他两个组件利用独特的 MS2 噬菌体蛋白/RNA 相互作用系统,其中噬菌体的外壳蛋白与独特的 19 核苷酸 RNA 适体紧密且特异性地结合。在 SAM 的第二个组件中,形成特征性茎环结构的 MS2 适体被添加到 sgRNA 中。sgRNA-MS2 组件与 dCas9 形成复合物,并将其引导至启动子区旁边的目标 DNA 序列
利用 Cas9 的催化失活突变体(称为 dCas9)阻断细菌基因表达的能力正迅速成为一种标准方法,用于探测基因功能、进行高通量筛选和设计细胞以达到预期目的。然而,我们仍然缺乏对决定 dCas9 靶向活性的设计规则的良好理解。利用高通量筛选数据,我们建立了一个模型,根据靶序列预测 dCas9 阻断 RNA 聚合酶的能力,并在独立生成的数据集上验证其性能。我们进一步为大肠杆菌 MG1655 EcoWG1 设计了一个新型的全基因组向导 RNA 文库,使用我们的模型选择具有高活性的向导,同时避免可能有毒或具有脱靶效应的向导。在富集培养基中生长期间使用 EcoWG1 库进行的筛选比之前发布的筛选有所改进,表明仅使用少量精心设计的指南即可获得非常好的性能。能够设计有效的小型库将有助于使 CRISPRi 筛选更容易执行且更具成本效益。我们的模型和材料可通过 crispr.pasteur.fr 和 Addgene 向社区提供。
利用 Cas9 的催化失活突变体(称为 dCas9)阻断细菌基因表达的能力正迅速成为一种标准方法,用于探测基因功能、进行高通量筛选和设计细胞以达到预期目的。然而,我们仍然缺乏对决定 dCas9 靶向活性的设计规则的良好理解。利用高通量筛选数据,我们建立了一个模型,根据靶序列预测 dCas9 阻断 RNA 聚合酶的能力,并在独立生成的数据集上验证其性能。我们进一步为大肠杆菌 MG1655 EcoWG1 设计了一个新型的全基因组向导 RNA 文库,使用我们的模型选择具有高活性的向导,同时避免可能有毒或具有脱靶效应的向导。在富集培养基中生长期间使用 EcoWG1 库进行的筛选比之前发布的筛选有所改进,表明仅使用少量精心设计的指南即可获得非常好的性能。能够设计有效的小型库将有助于使 CRISPRi 筛选更容易执行且更具成本效益。我们的模型和材料可通过 crispr.pasteur.fr 和 Addgene 向社区提供。
©作者2023,更正的出版物2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
摘要 CRISPR-Cas 系统已被广泛用作基因组编辑工具,其中两种常用的 Cas 核酸酶是 Spy Cas9 和 Lb Cas12a。虽然这两种核酸酶都使用 RNA 向导来寻找和切割靶 DNA 位点,但这两种酶在原间隔区相邻基序 (PAM) 要求、向导结构和切割机制方面有所不同。在过去的几年里,合理工程设计导致了 PAM 放宽变体 Sp RYCas9 和 imp Lb Cas12a 的诞生,以拓宽可靶向的 DNA 空间。通过使用它们的催化无活性变体 (dCas9/dCas12a),我们量化了蛋白质特异性特征如何影响靶标搜索过程。为了进行量化,我们将这些核酸酶与光激活荧光蛋白 PAmCherry2.1 融合,并在大肠杆菌细胞中进行单粒子追踪。通过跟踪分析,我们推导出了每种具有非靶向 RNA 向导的核酸酶的动力学参数,这强烈表明 Lb dCas12a 变体对 DNA 的询问比 Spy dCas9 更快。在存在靶向 RNA 向导的情况下,模拟和细胞成像均证实 Lb dCas12a 变体在找到特定靶位点方面更快、更高效。我们的工作展示了使用强大的框架工作放宽 Spy dCas9 和 Lb dCas12a 中的 PAM 要求的权衡,这可以应用于其他核酸酶以量化它们的 DNA 靶标搜索。
开发活体成像技术以提供染色质在活细胞中如何组织的信息对于解释生物过程的调节至关重要。在这里,我们展示了基于 CRISPR/Cas9 的活体成像技术的改进。在这种方法中,sgRNA 支架与 RNA 适体融合,包括 MS2 和 PP7。当死 Cas9 (dCas9) 与嵌合 sgRNA 共表达时,标记 MS2 和 PP7 适体的荧光外壳蛋白 (tdMCP-FP 和 tdPCP-FP) 被招募到目标序列中。与之前使用 dCas9:GFP 的工作相比,我们表明,使用基于适体的 CRISPR 成像构建体,瞬时转化的本氏烟的端粒标记质量得到了改善。标记受适体拷贝数的影响,受启动子类型的影响较小。相同的结构不适用于稳定转化植物和根中的重复标记。RNP 复合物与其靶 DNA 的持续相互作用可能会干扰细胞过程。
近年来,RNA 引导的基因组编辑 (CRISPR-Cas9 技术) 的发展彻底改变了植物基因组编辑。在营养缺乏条件下,不同的转录因子和调控基因网络共同作用以维持营养稳态。提高氮 (N)、磷 (P) 和钾 (K) 的利用效率对于确保可持续产量、提高质量和抗逆性至关重要。本综述概述了适合基因组编辑的潜在目标,以了解和提高营养利用 (NtUE) 效率和营养胁迫耐受性。还描述了使用关键负调节剂和正调节剂的不同基因组编辑策略。营养信号的负调节剂是基因组编辑的潜在目标,可在资源匮乏的条件下改善营养吸收和应激信号。通过 CRISPR/dead (d) Cas9 (dCas9) 胞嘧啶和腺嘌呤碱基编辑和主要编辑进行的启动子工程是产生精确变化的成功策略。 CRISPR/dCas9 系统还具有利用转录激活因子/抑制因子以有针对性的方式过度表达目标基因的额外优势。CRISPR 激活 (CRISPRa) 和 CRISPR 干扰 (CRISPRi) 是 CRISPR 的变体,其中实现了 dCas9 依赖的转录激活或干扰。dCas9-SunTag 系统可用于设计植物中的靶向基因激活和 DNA 甲基化。通过 CRISPR-Cas 技术开发营养利用效率高的植物将加快作物营养胁迫耐受性遗传改良的速度,并提高农业的可持续性。
成熟和新兴的基因编辑器 CRISPR–Cas 系统是一种广泛存在的原核生物防御系统,用于防御入侵的噬菌体和外来遗传物质。在自然界中,它们由 (1) 效应模块(在第 1 类 CRISPR 系统中是蛋白质复合物,在第 2 类 CRISPR 系统中是单个效应子)和 (2) 适应模块(将外来序列整合到 CRISPR 阵列中,crRNA 从中表达)组成。由于这些系统是 RNA 引导的,因此可以通过改变 crRNA 的序列重新定位它们,这为可编程基因组编辑工具提供了一个起点,有关此类工具的开发已在其他地方进行了综述 5 – 13 。第一个被设计用于人类细胞的系统是 2 类 CRISPR–Cas9 系统 14、15,其中化脓性链球菌 CRISPR–Cas9 系统 (SpCas9;也简称为 Cas9) 是目前使用最广泛的系统。Cas9 在与向导 RNA(对于 Cas9 来说称为单向导 RNA (sgRNA))互补的靶位点处产生双链断裂 (DSB);在人类细胞中,这些 DSB 可以通过非同源末端连接 (NHEJ) 修复,这一过程通常会导致基因功能丧失。早期临床数据 16 表明,NHEJ 介导的基因敲除会降低致病蛋白的表达(见相关链接)。靶向的 DSB 也可以通过宿主细胞的内源性同源修复机制进行修复,从而整合由 Cas9 和 gRNA 随附的外源提供的模板 DNA。 Cas9 已被改造以实现其他基因组结果。通过突变 SpCas9 的催化残基(参考文献 17),Cas9 可以转化为可编程的 DNA 结合蛋白,通常称为死 Cas9 (dCas9)。尽管单独使用 dCas9 可以通过阻止 RNA 聚合酶的通过来减少靶基因转录,但 dCas9 与转录抑制因子(例如 Krüppel 相关框结构域 18)或表观基因组修饰因子(例如 DNA 甲基化酶 DNMT3A 19、20)的融合已促成 CRISPR 干扰系统的产生。类似地,dCas9 可通过融合转录激活因子(如 VP64(参考文献 21))或表观基因组修饰因子(如人类乙酰转移酶 p300(参考文献 22)或 TET1 脱甲基酶 19、23)用于靶向转录激活。
在活细胞中基因组基因局的标签为研究基因组空间组织和基因相互作用提供了视觉证据。CRISPR/DCAS9(群集定期间隔短的短倾向重复序列/停用CAS9)通过DCAS9/SGRNA/荧光蛋白复合物与靶基因组基因座中重复序列的结合来标记基因基因。但是,核中存在许多荧光蛋白通常会引起高背景荧光读数。本研究旨在通过重新设计由DCAS9-Suntag-NLS(目标模块)和SCFV-SFGFP-NLS(信号模块)组成的当前CRISPR/DCAS9- SUNTAG标签系统来限制进入核的荧光模块的数量。我们删除了信号模块的核位置序列(NLS),并将EGFP的两个副本插入信号模块中。核的荧光强度与细胞质的荧光强度(N/C比)降低了71%,信号与背景(S/B比)的比率增加了1.6倍。该系统可以稳定地标记随机选择的基因组基因局基因局基因组基因座,少于9个重复序列。
