摘要 Ð CRISPR 介导的基因调控因其可扩展性而备受关注,可以创建越来越大的遗传回路。由于不同小向导 RNA 之间对 dCas9 资源的竞争而产生的非预期相互作用已被广泛描述为 CRISPR 介导的抑制 (CRISPRi)。对于 CRISPR 介导的激活 (CRISPRa),这种分析在很大程度上是缺失的。在本文中,我们考虑两个必需的共享资源 (dCas9 和激活蛋白) 对 CRISPRa 进行建模,并确定通过资源竞争出现的相互作用图。多个支架 RNA (scRNA) 之间存在两个共享资源是造成两种主要现象的原因。首先,我们用数学证明了“自我隔离”效应的存在,其中 scRNA 抑制其自身的靶基因而不是激活它,从而否定了 CRISPRa 的功能。其次,我们证明与单一资源的情况相比,非靶基因的不必要抑制要强得多。这些结果表明,同时调节多种资源的新控制方法将有助于减轻 CRISPRa 中资源竞争的不良影响。
CRISPR 干扰 (CRISPRi) 是一种在哺乳动物细胞中沉默基因的高效方法,它采用酶失活形式的 Cas9 (dCas9) 与一个或多个与靶基因转录起始位点互补 20 个核苷酸 (nt) 的向导 RNA (gRNA) 复合。此类 gRNA/dCas9 复合物与 DNA 结合,阻碍目标基因座的转录。在这里,我们提出了一种替代的基因抑制策略,即使用活性 Cas9 与截短的 gRNA (tgRNA) 复合。Cas9/tgRNA 复合物与特定靶位点结合而不会触发 DNA 切割。当靶向转录起始位点附近时,这些短的 14-15 nts tgRNA 可有效抑制果蝇体细胞组织中几种靶基因的表达,而不会产生任何可检测到的靶位点突变。 tgRNA 在与 Cas9-VPR 融合蛋白复合时还可以激活靶基因表达或调节增强子活性,并且可以整合到基因驱动中,其中传统 gRNA 维持驱动,而 tgRNA 抑制靶基因表达。
摘要aflysam/crispra系统最近已成为果蝇果蝇(Drosophila Melanogaster)的功能性研究的强大工具。该系统包括GAL4/UAS驱动的DCAS9激活剂和U6促进器控制的SGRNA。建立了超过其他组合的DCAS9激活剂,以进一步提高靶向激活剂的效率,我们系统地优化了SGRNA的参数。有趣的是,发现最有效的SGRNA在转录起始位点(TSS)上游的-150bp到-450bp的区域积累,并且激活效率显示与SGRNA靶向序列的GC含量的正阳性相关性很强。此外,目标区域主要是GC含量,因为SGRNA的靶向区域超过-600BP,即使含有75%的GC,TSS的SGRNA都会降低效率。令人惊讶的是,当将靶向sgrNA的活性与DNA链的活性进行比较时,靶向非模板链的SGRNA靶向均优于互补的模板链,无论是在细胞和体内。总而言之,我们定义了SGRNA设计的标准,这将极大地促进CRISPRA在功能奖励研究中的应用。
源自 Cas9 RNA 引导核酸酶的遗传工具为研究和改造细菌提供了必不可少的能力。虽然在 Cas9 应用于哺乳动物细胞的早期就已注意到脱靶效应的重要性,但由于细菌基因组较小,因此很容易避免 Cas9 在细菌基因组中的脱靶切割。尽管如此,一些研究报告了 Cas9 表达有毒的实验设置,即使使用催化失活的 Cas9 变体 (dCas9)。具体而言,dCas9 在与共享特定 PAM(原间隔区相邻基序)近端序列基序的引导 RNA 复合时具有毒性。在这里,我们证明这种毒性是由 Cas9 与必需基因启动子的脱靶结合引起的,脱靶基因的沉默发生在 PAM 近端序列中仅 4 个 nt 的同一性处。在大肠杆菌和其他肠细菌的各种菌株中进行的筛选表明,有毒向导 RNA 的性质会随着脱靶位置序列的进化而改变。这些结果凸显了 Cas9 可能与细菌基因组中数百个脱靶位置结合,从而导致不良影响。在设计和解释细菌中的 CRISPR-Cas 实验时必须考虑这一现象。
大量 X 连锁基因逃避 X 染色体失活,并与独特的表观遗传特征相关。与 X 逃避密切相关的一种表观遗传修饰是启动子区域的 DNA 甲基化降低。在这里,我们通过编辑 CDKL5 启动子上的 DNA 甲基化,从人类类神经元细胞中沉默的 X 染色体等位基因中创建了一种人工逃避,CDKL5 是一种导致婴儿癫痫的基因。我们发现,使用三个向导 RNA 将 TET1 的催化域与靶向 CDKL5 启动子的 dCas9 融合,结合从 CpG 二核苷酸中去除甲基,可显著重新激活失活等位基因。令人惊讶的是,我们证明 TET1 和 VP64 转录激活因子的共表达对非活性等位基因的重新激活具有协同作用,使活性等位基因的水平超过 60%。我们进一步使用多组学评估来确定转录组和甲基化组上的潜在脱靶。我们发现 dCas9 效应物的协同传递对靶位点具有高度选择性。我们的研究结果进一步阐明了与逃避 X 染色体失活相关的 DNA 甲基化降低的因果作用。了解与逃避 X 染色体失活相关的表观遗传学对患有 X 连锁疾病的人有很大的帮助。
大量 X 连锁基因逃避 X 染色体失活,并与独特的表观遗传特征相关。与 X 逃避密切相关的一种表观遗传修饰是启动子区域的 DNA 甲基化降低。在这里,我们通过编辑 CDKL5 启动子上的 DNA 甲基化,从人类类神经元细胞中沉默的 X 染色体等位基因中创建了一种人工逃避,CDKL5 是一种导致婴儿癫痫的基因。我们发现,使用三个向导 RNA 将 TET1 的催化域与靶向 CDKL5 启动子的 dCas9 融合,结合从 CpG 二核苷酸中去除甲基,可显著重新激活失活等位基因。令人惊讶的是,我们证明 TET1 和 VP64 转录激活因子的共表达对非活性等位基因的重新激活具有协同作用,使活性等位基因的水平超过 60%。我们进一步使用多组学评估来确定转录组和甲基化组上的潜在脱靶。我们发现 dCas9 效应物的协同传递对靶位点具有高度选择性。我们的研究结果进一步阐明了与逃避 X 染色体失活相关的 DNA 甲基化降低的因果作用。了解与逃避 X 染色体失活相关的表观遗传学对患有 X 连锁疾病的人有很大的帮助。
基因表达可以使用CRISPR -CAS9系统激活或抑制。然而,缺乏无需使用外源转录调节蛋白的基因表达激活的剂量依赖性激活的工具。在这里,我们描述了化学表观遗传学修饰剂(CEMS),旨在通过募集内源性染色质激活机械的合并来激活靶基因的表达,从而消除了对外源转录激活器的需求。该系统有两个部分:与FK506结合蛋白(FKBP)复合的催化无活性CAS9(DCAS9)和由与细胞表观遗传机械相互作用的分子相关的FK506的CEM。我们表明,根据基因,CEM在目标内源性基因座的基因表达上调高达20倍或更多。我们还证明了对转录激活的剂量依赖性控制,跨多种基因的功能,CEM活性的可逆性以及我们在整个基因组中最佳一流CEM的特异性。真核基因组被组织并包装成不同程度的压实,这有助于基因表达的调节。蛋白质 - 蛋白质和蛋白质-DNA相互作用的网络调节基因表达的适当水平。对该法规网络的破坏驱动了许多人类疾病,包括癌症1、2。雕刻染色质景观的重要因素是翻译后组蛋白尾巴修饰。赖氨酸乙酰化是一种具有生物物理和间接蛋白质摄取效应的修饰。受这些研究的启发,我们试图开发一种能够作家(组蛋白乙酰转移酶(帽子)),橡皮擦(组蛋白脱乙酰基酶(HDACS))和读取器(例如,溴结构域和染色体域)的蛋白质家族均匀控制基因表达3,4。几个小组已经证明了募集外来染色质修饰机械的能力,以一种以基因特异性方式控制扩张水平的一种方式5 - 11。随着CAS9和DCAS9技术的重大进展,精确诱导表达变化的能力迅速发展。Liszczak及其同事的开创性工作证明了使用DCAS9系统结合染色质调节蛋白的抑制剂12募集内源性机械的能力。ANSARI及其同事的其他工作使用了可编程的DNA结合配体,并结合了溴结构域抑制剂来调节转录13。
诱导的所需基因表达一直是揭示基因功能和调节合成生物学和治疗应用的细胞活性的重要策略。Apart from ectopically expressing additional copies of a gene by introducing their open reading frames (ORFs), methods to arti fi cially activate endogenous copies of genes have been explored, including transcription activating factors tethered to zinc fi nger proteins ( Beerli et al., 2000 ) and transcription activator-like effectors (TALE) ( Miller et al., 2011 ; Zhang et al., 2011 ; Maeder等人,2013b; Perez-Pinera等,2013b)。Originally discovered as a virus-resistance mechanism from bacteria ( Barrangou et al., 2007 ), the CRISPR-Cas system has provided ef fi cient, precise, and scalable ways to modulate expression of genes, and has been successfully adopted for targeted gene activation ( Mali et al., 2013 ; Perez-Pinera et al., 2013a ; Maeder et al., 2013a ; Cheng et al., 2013年,Tanenbaum等人,2014年;为了使用CRISPR-CAS9实现基因激活,创建了催化失活的Cas9(DCAS9),以与特定的基因组区域结合而没有能力创建双链突破(Jinek et al。,2012; Gasiunas et al。,2012; Qi et al。,2013; Qi et al。,2013; Konermann et; Konermann et al an al an eal; konermann et al。,2013; a e e,2013; i。赋予DCAS9具有诱导基因表达的能力,已经探索了不同的转录激活域的基因激活强度(图1A)。第一代CRISPRA的灵感来自锌纤维和基于故事的方法,并使用了包括VP64或P65在内的单个激活域。vp64由VP16的四个副本组成,该副本是源自单纯疱疹病毒的转录激活因子。p65是NF-κB复合物的一部分,负责免疫信号传导中的转录激活。第二代CRISPRA系统制定了不同的策略来招募不同的激活剂的多个副本,包括用于招募10或24份VP64副本的Suntag阵列到给定的基因座,VP64,P65和RTA(VPR)的串联融合到DCAS9,以及
在欧盟项目“再生”的背景下处理科学话题:欧盟项目涉及技术的发展,在侵犯大脑的情况下,包括可以通过中风或神经退行性疾病恢复,神经元丧失。重点是用于将CRISPR/DCAS9蛋白转移到神经元中的胶质细胞转移的非病毒措辞的生产和检查。作为您的论文的一部分,计划和进行体内毒性检查,以便能够获取有关新措辞的神经毒性和神经学变化的数据。
摘要:功能遗传学学的持续挑战是开发用于精确操纵表观遗传标记的工具。这些工具将允许从基于因果关系的发现转移到基于因果关系的发现,这是对机械原理得出结论的必要步骤。在这篇综述中,我们描述并讨论了为影响表观遗传标记而开发的工具和技术的优势和局限性,并且可以用来研究其对核和染色质结构,转录以及它们在植物细胞命运和发育中的直接影响。一方面,表观基因组范围的方法包括染色质修饰者或读取器的药物抑制剂,针对组蛋白标记的纳米体或表达经过修饰的组蛋白或突变蛋白染色质效应子的纳米体。另一方面,基因座特异性方法包括靶向染色质的精确区域,工程蛋白能够修改表观遗传标记。早期系统将效应子与识别特定DNA序列(锌指或故事)的蛋白质结构融合在一起,而最新的DCAS9方法通过RNA-DNA相互作用运行,从而为工具设计提供了更多的功能和模块化。最近在植物中测试了“第二代”,嵌合DCAS9系统的当前发展,旨在更好地靶向效率和修改能力。最后,最近的概念验证研究预测甚至限制工具,例如可诱导/可切换系统,这些工具将允许对特定染色质标记发生变化的分子事件进行时间分析。
