摘要 - X射线血管造影中冠状动脉片段和狭窄的冠状动脉片段和狭窄的检测和诊断至关重要,但是,原始图像中图像质量的变化,噪声和伪影造成了当前算法的明确困难。这些问题通过传统方法对有意义的分析构成了挑战,这损害了检测算法的效率。为了克服这些缺点,当前的研究提出了一种新的集成深度学习技术,该技术将深度卷积神经网络(DCNN)与双重条件检测中的生成对抗网络(GAN)相结合。从X射线血管造影图像中提取的详细特征学习是通过DCNN进行的,其中考虑了血管结构和自动病理区域的检测。gan的使用是用合成图像,扭曲和视觉噪声进一步丰富数据集,这将使模型更容易受到各种图像条件的影响。两种方法都将有助于更好地分类正常和病理区域,并且对所获得图像的质量的敏感性降低。因此,提出的方法显示了诊断准确性的提高,作为心血管系统临床决策的坚实基础。已通过以下评估指标证明了建议方法的功效:97.9%的F1得分,98.7%的精度,98.2%的精度和98%的召回率。它通过在困难的成像环境中提供更好的结果来揭示了使用算法进行心血管评估的决定性进步。与传统方法相比,结果证明了牙菌斑和狭窄识别的更高灵敏度和准确性,这证实了使用建议的DCNN-GAN方法来考虑医学成像中实际波动的效率。
工作原理 • 提前与我们的编辑团队讨论会议主题。旨在以教育性和信息性内容为主导 • 形式可以包括小组讨论,由商定的合作伙伴参与或 PowerPoint 演示 • 分享调查结果和参与者的问题 • 在数字杂志/网站上发表社论文章,重点介绍会议成果 • 分享注册数据