电源电压,V DD1 、V DD2 和 V DD3 (见注 1) 6.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .输出电压范围,VO −0.3 V 至 V DD + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值输入电流(任何数字输入) ± 10 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .峰值总输入电流(所有输入)± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,TA:TLC1550I,TLC1551I −40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . . . . TLC1550M −55 ° C 至 125 ° C . . . . . . . . . . . . . . . . . . . 存储温度范围,T stg −65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . . 10 秒外壳温度:FK 或 FN 封装 260 ° C . . . . . . . . . . . . . . . ..................................................................................................................................... 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 °C ....................................................................................................................................
电源电压,V DD1 、V DD2 和 V DD3 (见注释 1)6.5 V 。........................................输入电压范围,V I (任何输入) −0.3 V 至 V DD + 0.3 V ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。输出电压范围,V O −0.3 V 至 V DD + 0.3 V。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。峰值输入电流(任何数字输入)± 10 mA 。......................。。。。。。。。。。。。。.....................峰值总输入电流(所有输入)± 30 mA .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....工作自然通风温度范围,T A :TLC1550I、TLC1551I −40 ° C 至 85 ° C ......................TLC1550M −55 ° C 至 125 ° C ................................存储温度范围,T stg −65 ° C 至 150 ° C .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。........10 秒外壳温度:FK 或 FN 封装 260 °C .............。。。。。。。。。。。。。。。。。。。。。。。。..距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 ° C ..........
1 Plant Pathology, SCRI, Invergowrie, Dundee, DD2 5DA, 2 Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK, 3 Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, NC, 4 Department of Molecular Biology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02114, USA, 5 Centro de Ciênciasdo Mar,Algarve大学,葡萄牙,葡萄牙6 Andrew Dalke科学,AB,AB,AB,哥德堡,瑞典,瑞典7号,加利福尼亚7号电信和信息技术研究所,加利福尼亚大学,加利福尼亚大学,圣地亚哥大学,圣地亚哥分校,9500 Gilman,La Jolla,La Jolla,CA 92093-044444444446,美国,8500年 Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark, 9 Molecular Phylogenetics, Department of Biology, TU Kaiserslautern, 67653 Kaiserslautern, UK, 10 EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany, 11 Institute of Informatics, University of Warsaw, Poland和12 Riken Omics Science Center,1-7-22 Suehiro-Cho,Tsurumi-ku,横滨 - 希(Yokohama-shi),卡纳那川 - 肯尼(Kanagawa-ken),230-0045,日本
摘要 疟疾是一种由蚊子传播的致命传染病,会影响人类,是由疟原虫(主要是恶性疟原虫)引起的。普遍的耐药性迫使我们发现新型化合物和替代药物发现靶点。辅酶 A (CoA) 生物合成途径对疟原虫恶性疟原虫至关重要。CoA 生物合成中的最后一种酶去磷酸辅酶 A 激酶 (DPCK) 对主要生命周期发育阶段至关重要,但尚未被用作抗疟药物发现的药物靶点。我们使用重组恶性疟原虫 DPCK(Pf DPCK)对 210,000 个化合物库进行了高通量筛选。开发了一种使用 1,536 孔平台的高通量酶促分析来识别潜在的 Pf DPCK 抑制剂。 Pf DPCK 抑制剂还抑制了 P. falciparum 全细胞无性血液阶段试验中对药物敏感和耐药菌株的寄生虫生长。根据化合物在无细胞(Pf DPCK)和全细胞(Pf 3D7 和 Pf Dd2)试验中的效力、相对于人类直系同源物(Hs COASY)的选择性以及无细胞毒性(HepG2)来选择命中化合物。使用多参数优化 (MPO) 评分模型对化合物进行排序,并研究最有希望的化合物的特异性结合和抑制机制。
5 kV rms 隔离 RS-485 收发器 RS-485 总线引脚上具有 ±42 V 交流/直流峰值故障保护 DO-160G 第 25 节 ESD 保护:±15 kV 空气放电 RS-485 总线引脚上具有完全认证的 DO-160G EMC 保护 第 22 节防雷保护波形 3、波形 4/波形 1、波形 5A 引脚注入,4 级保护 RS-485 A、B 引脚 HBM ESD 保护:>±30 kV 安全和法规批准 CSA 元件验收通知 5A、DIN V VDE V 0884-10、UL 1577、CQC11-471543-2012(待定) 整个电源范围内符合 TIA/EIA RS-485/RS-422 要求 VDD2 上工作电压范围为 3 V 至 5.5 V 工作电压范围为 1.7 V 至 5.5 V在 V DD1 逻辑电源上 共模输入范围为 −25 V 至 +25 V 高共模瞬变抗扰度:>75 kV/μs 强大的抗噪能力(按照 IEC 62132-4 标准测试) 通过 EN55022 B 类辐射发射测试,裕度为 6 dBµV/m 接收器短路、开路和浮动输入故障安全 支持 256 个总线节点(96 kΩ 接收器输入阻抗) 无故障上电/断电(热插拔)
ADM2795E-EP 是一款 5 kV rms 信号隔离 RS-485 收发器,在 RS-485 总线引脚上提供高达 ±42 V 的交流/直流峰值总线过压故障保护。该器件集成了 ADI 公司的 i Coupler® 技术,将 3 通道隔离器、RS-485 收发器和 IEC 电磁兼容性 (EMC) 瞬态保护功能集成在一个封装中。ADM2795E-EP 在 RS-485 总线引脚上集成了完全认证的 DO-160G EMC 保护,以及第 22 节防雷保护。ADM2795E-EP 还提供第 25 节 ±15 kV ESD 空气放电保护。对于第 22 节雷电,ADM2795E-EP 使用 33 Ω 或 47 Ω 限流电阻将波形 3、波形 4/波形 1 和波形 5A 保护至 4 级,以连接 GND 2 或跨隔离栅将 4 级保护至 GND 1 。该器件具有 ±25 V 的扩展共模输入范围,可提高嘈杂环境中的数据通信可靠性。ADM2795E-EP 能够在宽电源范围内工作,具有 1.7 V 至 5.5 V V DD1 电源范围,允许与低压逻辑电源接口。当在 3 V 至 5.5 V V DD2 电源上工作时,ADM2795E-EP 还完全符合 TIA/EIA RS-485/RS-422 标准。该器件具有全面的扩展工作温度范围,即 −55°C 至 +125°C,并采用 16 引线宽体 SOIC 封装。
疟疾是一种由疟原虫引起的热带疾病,通过受感染的按蚊叮咬传播。蛋白激酶 (PK) 在疟疾病原体的生命周期中起着关键作用,使这些蛋白质成为抗疟药物研发活动的有吸引力的靶标。作为了解寄生虫信号传导功能的努力的一部分,我们报告了对八种疟原虫 PK 的生物信息学流程分析的结果。到目前为止,还没有进行过 P. malariae 和 P. ovale 激酶组组装。我们对预测的激酶进行了分类、整理和注释,以更新迄今为止发表的 P. falciparum、P. vivax、P. yoelii、P. berghei、P. chabaudi 和 P. knowlesi 激酶组,并首次报告了 P. malariae 和 P. ovale 的激酶组。总体而言,在所有疟原虫属激酶组中鉴定出 76 至 97 种 PK。大多数激酶被分配到九个主要激酶组中的七个:AGC、CAMK、CMGC、CK1、STE、TKL、OTHER;以及疟原虫特异性组 FIKK。约 30% 的激酶已深入分类为组、科和亚科级别,只有约 10% 仍未分类。此外,更新和比较间日疟原虫和恶性疟原虫的激酶组可以优先选择激酶作为潜在的药物靶标,可用于探索发现抗疟新药。通过这种综合方法,我们选出了 37 种蛋白激酶作为潜在靶点,并鉴定出对无性疟原虫 (3D7 和 Dd2 菌株) 阶段具有中等体外活性的试验化合物,这些化合物可作为未来寻找有效抗疟药物的起点。2022 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章 ( http://creative- commons.org/licenses/by-nc-nd/4.0/ )。
疟疾是一种由疟原虫引起的热带疾病,通过受感染的按蚊叮咬传播。蛋白激酶 (PK) 在疟疾病原体的生命周期中起着关键作用,使这些蛋白质成为抗疟药物研发活动的有吸引力的靶标。作为了解寄生虫信号传导功能的努力的一部分,我们报告了对八种疟原虫 PK 的生物信息学流程分析的结果。到目前为止,还没有进行过 P. malariae 和 P. ovale 激酶组组装。我们对预测的激酶进行了分类、整理和注释,以更新迄今为止发表的 P. falciparum、P. vivax、P. yoelii、P. berghei、P. chabaudi 和 P. knowlesi 激酶组,并首次报告了 P. malariae 和 P. ovale 的激酶组。总体而言,在所有疟原虫属激酶组中鉴定出 76 至 97 种 PK。大多数激酶被分配到九个主要激酶组中的七个:AGC、CAMK、CMGC、CK1、STE、TKL、OTHER;以及疟原虫特异性组 FIKK。约 30% 的激酶已深入分类为组、科和亚科级别,只有约 10% 仍未分类。此外,更新和比较间日疟原虫和恶性疟原虫的激酶组可以优先选择激酶作为潜在的药物靶标,可用于探索发现抗疟新药。通过这种综合方法,我们选出了 37 种蛋白激酶作为潜在靶点,并鉴定出对无性疟原虫 (3D7 和 Dd2 菌株) 阶段具有中等体外活性的试验化合物,这些化合物可作为未来寻找有效抗疟药物的起点。2022 年由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
3. G æ de P、Oellgaard J、Carstensen B 等人。多因素干预对 2 型糖尿病和微量白蛋白尿患者的寿命延长:Steno-2 随机试验的 21 年随访。糖尿病学。2016;59(11):2298-2307。4. 新兴风险因素协作组织,Di Angelantonio E、Kaptoge S 等人。心脏代谢多种疾病与死亡率的关系。JAMA。2015;314(1):52-60。5. Mosenzon O、Alguwaihes A、Leon JLA 等人。CAPTURE:一项跨国、横断面研究,研究 13 个国家 2 型糖尿病成人心血管疾病患病率。心血管糖尿病。2021;20(1):154。 6. Virani SS、Alonso A、Aparicio HJ 等人。心脏病和中风统计 - 2021 年更新:美国心脏协会的报告。循环。2021;143(8):e254-e743。7. Gyldenkerne C、Knudsen JS、Olesen KKW 等人。全国范围内 2 型糖尿病患者心脏病风险和死亡率趋势:丹麦队列研究。糖尿病护理。2021;2353-2360。8. Davies MJ、Aroda VR、Collins BS 等人。2 型糖尿病高血糖管理,2022 年。美国糖尿病协会 (ADA) 和欧洲糖尿病研究协会 (EASD) 的共识报告。糖尿病护理。 2022;45(11):2753-2786。9. Zelniker TA、Wiviott SD、Raz I 等。胰高血糖素样肽受体激动剂和钠-葡萄糖协同转运蛋白 2 抑制剂在预防 2 型糖尿病主要不良心血管和肾脏结局方面的作用比较。循环。2019;139(17):2022-2031。10. Sattar N、Lee MMY、Kristensen SL 等。2 型糖尿病患者使用 GLP-1 受体激动剂对心血管、死亡率和肾脏结局的影响:随机试验的系统评价和荟萃分析。柳叶刀糖尿病内分泌学。2021;9(10):653-662。11. 美国糖尿病协会专业实践委员会,Draznin B、Aroda VR 等。 9. 药物治疗血糖的方法:糖尿病医疗护理标准-2022。糖尿病护理。2022;45(增刊1):S125-S143。12. Funck KL、Knudsen JS、Hansen TK、Thomsen RW、Grove EL。2 型糖尿病和心血管疾病患者中心脏保护性降糖药物的实际使用情况:2012 年至 2019 年丹麦全国队列研究。糖尿病肥胖代谢。2021;23(2):520-529。13. Hofer F、Kazem N、Schweitzer R 等。冠状动脉疾病患者中钠-葡萄糖协同转运蛋白 2 抑制剂和胰高血糖素样肽-1 受体激动剂的处方模式。心血管药物治疗。 2021;35(6):1161-1170。14. Khunti K、Knighton P、Zaccardi F 等。2 型糖尿病患者降糖疗法处方与 COVID-19 死亡风险:英格兰全国性观察性研究。柳叶刀糖尿病内分泌学。2021;9(5):293-303。15. Thomsen RW、Friborg S、Nielsen JS、Schroll H、Johnsen SP。丹麦 2 型糖尿病战略研究中心 (DD2):丹麦糖尿病护理的组织以及 DD2 研究参与者数据收集的补充数据源。临床流行病学杂志。2012;4-(补充 1):15-19。16. Pottegård A、Schmidt SAJ、Wallach-Kildemoes H、Sørensen HT、Hallas J、Schmidt M。数据资源概况:丹麦国家处方登记处。国际流行病学杂志。2017;46(3):798。17. 世卫组织药品统计方法合作中心。ATC 分类索引与 DDD,2021 年。挪威奥斯陆;2020 年。18. Thygesen LC、Daasnes C、Thaulow I、Brønnum-Hansen H. 丹麦(全国)健康和社会问题登记册简介:结构、访问、立法和归档。 Scand J Public Health。2011;39(7 Suppl):12-16。19. Schmidt M、Schmidt SAJ、Sandegaard JL、Ehrenstein V、Pedersen L、Sørensen HT。丹麦国家患者登记处:内容、数据质量和研究潜力审查。CLEP。2015;449-490。20. Schmidt M、Pedersen L、Sørensen HT。丹麦民事登记系统作为流行病学工具。Eur J Epidemiol。2014;29(8):541-549。21. Rasmussen L、Valentin J、Gesser KM、Hallas J、Pottegård A。丹麦国家处方登记处处方者信息的有效性。Basic Clin Pharmacol Toxicol。 2016;119(4):376-380。
摘要目标/假设低出生体重是2型糖尿病的危险因素,但是尚不清楚低出生体重是否与疾病发作处的独特临床特征有关。我们检查了2型糖尿病中较低或更高的出生体重是否与疾病发作时临床相关的特征有关。方法记录了丹麦2型糖尿病(DD2)同时战略研究中心的6866名患有2型糖尿病的人的助产士记录。Using a cross-sectional design, we assessed age at diagnosis, anthropomorphic measures, comorbidities, medications, metabolic variables and family history of type 2 diabetes in individuals with the lowest 25% of birthweight (<3000 g) and highest 25% of birthweight (>3700 g), compared with a birthweight of 3000–3700 g as reference, using log-binomial and Poisson regression.通过线性和有限的立方样条恢复评估整个出生体重谱的连续关系。计算了2型糖尿病和出生体重的加权多基因评分(PS),以评估遗传易感性的影响。结果每1000 g出生体重的减小与3.3岁(95%CI 2.9,3.8)糖尿病发作年龄相关,1.5 kg/m 2(95%CI 1.2,1.7)下BMI和3.9 cm(95%CI 3.3,4.5)较小的腰围。临床定义的低出生体重(<2500 g)产生更强的关联。出生体重和临床特征之间的大多数关联似乎是线性的,并且更高的出生体重与相反方向反映出较低的出生体重的特征相关。与参考的出生体重相比,<3000 g的出生体重与更高的合并症有关(Charlson合并症指数得分≥3为1.36 [95%CI 1.07,1.73]),具有系统的BP≥155MMMHG(PR 1.26 [95%CI)[95%CI] [95%ci 1.07,1.73]。与糖尿病相关的神经疾病,2型糖尿病的家族史的可能性较小,使用三种或多种降糖药物(PR 1.33 [95%CI 1.06,1.65])以及三种或更多或更多的抗毒性药物(PR 1.09 [PR 1.09 [95%CI 0.99,1.20,1.20])。结果对代表2型糖尿病和出生体重的加权遗传易感性的PS的调整是可靠的。结论/解释尽管诊断年龄较小,肥胖和家族史的2型糖尿病患者较少,但出生重量<3000 g与更多的合并症有关,包括较高的收缩压BP,以及在最近患有2型糖尿病患者中使用较高的葡萄糖和降低葡萄糖和抗毒性药物。
