在本文中,我们介绍了一种新的几何深度学习模型 CorticalFlow,该模型通过给定一张三维图像来学习将参考模板变形为目标对象。为了保留模板网格的拓扑属性,我们通过一组微分同胚变换来训练我们的模型。这种新的流常微分方程 (ODE) 框架实现受益于小型 GPU 内存占用,可以生成具有数十万个顶点的曲面。为了减少由其离散分辨率引入的拓扑误差,我们推导出可改善预测三角网格流形性的数值条件。为了展示 CorticalFlow 的实用性,我们展示了它在大脑皮层表面重建这一具有挑战性的任务中的表现。与目前最先进的技术相比,CorticalFlow 可以生成更优质的曲面,同时将计算时间从 9 分半钟缩短到 1 秒。更重要的是,CorticalFlow 强制生成解剖学上合理的曲面;它的缺失一直是限制此类表面重建方法临床意义的主要障碍。
我是软材料的理论和计算研究专家。软材料被归类为施加力时容易变形的材料。示例包括生物种子,聚合物,胶体,液体和纳米材料。My research encompasses a wide range of topics, including biomolecules, proteins, lipid membranes, viruses such as SARS- CoV-2 and bacteriophages, polymers, metal-polymer complexes, polymer brushes, polysaccharides, polyelectrolyte membranes, colloidal systems, surfactants, shock waves, energy adsorption systems, chromatographic separation, and electron束光刻。我精通几种计算科学软件包,科学编程和源代码修改。我有教授物理学和计算方法的经验。我已经与来自印度,加拿大,美国,非洲,俄罗斯和中国在内的全球专家研究人员和学生合作。我已经成功地获得了资助机构的研究赠款,例如国家科学基金会,新泽西州临床和转化医学联盟(NJACTS),并与杜邦和高尔盖特 - 帕尔莫利维(Colgate-Palmolive)等行业合作伙伴合作。
史瓦西黑洞内部包含将其与类空奇点分隔开的测地线边界。任何跨越测地线边界向奇点迁移的信息都会因因果关系而不可挽回地丢失。如果史瓦西奇点吸收信息,则相应的演化将被视为悖论,因为它违反了信息处理的神圣规则 [1] 。人们通常认为时空涨落会变形其测地线边界附近的史瓦西几何,从而产生一致的量子演化。虽然这种动力学正则化机制的细节尚不清楚,但它们对于黑洞量子信息处理的整体方面(例如黑洞信息悖论 [2 – 4] )非常重要。在本文中,我们表明史瓦西奇点毗邻渐近静默时空区域,即无论初始场配置如何都会抑制空间量子关联的区域。更重要的是,它们适应所谓的 Zeno 边界,该边界标记了由测地线边界终止的超曲面堆栈,具有以下属性:在堆栈中填充量子信息的概率测度朝着奇点单调递减,并在测地线边界处消失。因此,量子事件无法探测测地线边界,量子信息也无法迁移
摘要 虚拟现实 (VR) 技术因其能够为用户提供沉浸式和交互式体验的能力而成为脑机交互和神经科学研究的有前途的工具。作为一种无创监测大脑皮层的强大工具,脑电图 (EEG) 与 VR 相结合为测量这些体验中的大脑活动提供了一个激动人心的机会,从而深入了解认知和神经过程。然而,传统的基于凝胶的 EEG 传感器与 VR 耳机不兼容,而且大多数使用刚性梳状电极的新兴 VR-EEG 耳机在长时间佩戴后会感到不舒服。为了解决这一限制,我们基于导电聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐/三聚氰胺 (PMA) 创建了柔软、多孔且与头发兼容的海绵电极,并通过定制的柔性电路将它们集成到 VR 耳机上,以便在执行 VR 任务期间进行多通道 EEG。我们的 PMA 海绵电极可以在 VR 耳机带自然施加的压力下变形,通过头发与头皮皮肤接触。特定接触阻抗始终低于 80 k Ω ·cm 2,即使在多毛部位也是如此。我们通过在无毛部位记录闭眼时的阿尔法节律来展示我们的 VR-EEG 耳机的功能
eccerine汗液包含丰富的电解质,代谢物,蛋白质,金属离子和其他生物标志物。这些化学物种浓度的变化可以表明水合状态的改变,它们还可以反映健康状况,例如囊性纤维化,精神分裂症和抑郁症。柔软的,皮肤交织的微流体系统的最新进展可以实时测量局部汗水损失和汗水生物标志物浓度,并在医疗保健中采用了广泛的应用。在某些情况下使用涉及对身体的物理影响,这些影响可以动态变形这些平台,并对测量可靠性产生不利影响。此处提供的工作克服了这种局限性,它通过使用相对较高的模量聚合物构建的微流体结构,并在嵌入低模量的低模量弹性体时以柔软的,系统水平的力学设计。分析模型和有限元分析定义这些系统的相关力学,并作为布局的基础,以允许在苛刻的,坚固的场景中进行稳健的操作,例如在足球中遇到的耐用场景,同时保留机械可伸展性,以舒适地与皮肤保持舒适的水平粘合。台式测试和在施加的机械应力下的汗液损失和氯化物浓度测量的体型现场研究表明了这些平台的关键特征。
Wafer Warpage是半导体制造商面临的基线问题,实际上,在与制造功率金属氧化物半导体磁场效应晶体管(MOSFET)的制造的人中尤为明显。这是因为垂直MOSFET与传统的外侧对应物相比会经历更大的经线效应。wafers超过其临界价值的瓦金(Wafers)在自动处理过程中无法通过吸尘器吸附来削减其临界价值;晶圆上制造的设备也面临可靠性问题。本文介绍了用于减少电源MOSFET晶体经纪的各种机制的分析。通过改变背面金属化(BSM)厚度,膜沉积的溅射功率和晶片温度(即将低温条件引入过程中)来检查扭曲行为。结果表明,当前端制造过程完成后,BSM厚度和晶圆的温度都与晶圆经膜的相关性明显相关。晶圆弓水平与溅射功率的大小直接成比例。当溅射功率降低时,诱发残留应力较小以变形晶片结构。因此,可以调整溅射功率,以确保扭曲效应保持在其临界值以下。关键字:经形,功率MOSFET,残余压力,背面金属化,溅射功率,低温温度
在增材制造中,工艺参数直接影响材料的微观结构,从而影响所制造部件的机械性能。本文旨在通过在扫描电子显微镜 (SEM) 下结合高分辨率数字图像相关 (HR-DIC) 和电子背散射衍射 (EBSD) 图进行原位拉伸试验来表征局部微观结构响应,从而探索这种关系。所研究的样本是从通过定向能量沉积构建的双向打印单道厚度 316L 不锈钢壁中提取的。通过统计分析表征了晶粒的形态和晶体学纹理,并将其与该工艺的特定热流模式相关联。根据晶粒大小将其分为位于打印层内的大柱状晶粒和位于连续层之间界面的小等轴晶粒。原位拉伸实验的加载方向垂直于或沿打印方向进行,并展示不同的变形机制。对每个晶粒的平均变形的统计分析表明,对于沿构建方向的拉伸载荷,小晶粒的变形小于大晶粒。此外,HR-DIC 与 EBSD 图相结合显示,在没有单个或成簇的小晶粒的情况下,应变局部化位于层间界面处。对于沿打印方向的拉伸载荷,应变局部化存在
摘要。皮质表面重建在对围产期期间大脑快速发育进行建模方面起着基本作用。在这项工作中,我们提出了有条件的时间注意网络(COTAN),这是一个快速的端到端末端框架,用于新生儿皮质表面重建。Cotan可预测新生儿脑磁共振图像(MRI)的多分辨率固定速度场(SVF)。Cotan不是整合多个SVF,而是引入了注意机制,以通过在每个集成步骤中计算所有SVF的加权总和来学习有条件的时变速度场(CTVF)。每个SVF的重要性(通过学习的注意图估算)的重要性是基于新生儿的年龄,并且随着整合的时间步骤而变化。提出的CTVF定义了差异表面变形,该变形可有效地减少网格自我交流误差。仅需要0.21秒即可为每个脑半球变形至皮质白色垫料和毛皮表面的初始模板网格。cotan在开发的人类连接项目(DHCP)数据集上得到了验证,其中877 3D脑MR图像是从早产和术语出生的新生儿获取的。与最先进的基线相比,科坦仅以0.12±0.03mm的几何误差和0.07±0.03%的自我相交面部实现了优势。我们注意地图的可视化说明了科坦确实在没有中间监督的情况下自动学习了粗到细的表面变形。
2。适用于适用的表面平坦,粗糙度和可用的夹紧力3。所需的产品寿命和可靠性4。更高的工作温度范围5。由于电源骑自行车而抵抗极端机械应力6。由于温度暴露而没有干燥载体化合物7。在评估热界面材料之前,由于产品操作期间的机械应力而导致的复合泵出口,重要的是要定义该TIM在最终应用中取得成功所需的所有要求。一个常见的错误是要专注于热性能,以至于在将tim实施到最终产品上之前,其他关键属性被忽略了。金属TIMS金属TIMS的概述具有具有某些最高块状的TIM材料导热率的优势。这些TIM可以是焊料,液体或相变金属的形式,可压缩的材料会塑料变形为物体的表面特征和包括相变湿润的混合金属。见图4;在此图中,对象1是散热器,对象2是IC软件包的罐头。在其他示例中,对象1和2可能是不同的实体。许多金属TIM使用具有高各向同性热导率,低产量和流动强度的金属。低产量和流动强度使TIM能够符合物体的表面粗糙度和不规则性,从而具有较低的热接口电阻。此外,这些TIM将从低温下的变形中恢复。
SGIP1编码含有蛋白质SH3的GRB2样蛋白3个接口蛋白1(SGIP1)。其最长的同工型SGIP1α主要在大脑中表达(Lee等,2019)。SGIP1充当CME的调节剂(Mettlen等,2018)。CME的损害与ID和癫痫等神经发育障碍有关(Helbig等,2019)。 在发育过程中,需要 cme,用于轴突和树突生长的生长,以及通过在突触前的质膜上产生网状蛋白涂层的囊泡,从而引导从血浆中的货物蛋白从血浆膜中引导到细胞质量。 货物主要由跨膜蛋白及其细胞外液化组成。 链球菌络合物形成的启动需要磷酸二醇 - 4,5-双磷酸(PIP2)和衔接蛋白AP-2。 AP-2还调节GABA和谷氨酸受体的神经元表面水平,从而调节给定神经元上的兴奋性和抑制性突触输入(Kantamneni,2015)。 SGIP1包含结合AP-2和膜磷脂结合(MP)结合的μ-体积结构域(μHD),该结合结合磷脂酰丝氨酸和磷酸肌醇,从而导致质膜膜变形(Lee等,20211)。 MP结构域由外显子4和5编码,它们独立或同时受到替代剪接的影响,在框架中引起了替代性转录本(Durydivka等,2024)。所得的SGIP同工型仍然具有与膜的粘合,但具有变化的蜂窝分布(Dury Durydivka)。 这些替代剪接变体的功能性结合尚不清楚。CME的损害与ID和癫痫等神经发育障碍有关(Helbig等,2019)。cme,用于轴突和树突生长的生长,以及通过在突触前的质膜上产生网状蛋白涂层的囊泡,从而引导从血浆中的货物蛋白从血浆膜中引导到细胞质量。货物主要由跨膜蛋白及其细胞外液化组成。链球菌络合物形成的启动需要磷酸二醇 - 4,5-双磷酸(PIP2)和衔接蛋白AP-2。AP-2还调节GABA和谷氨酸受体的神经元表面水平,从而调节给定神经元上的兴奋性和抑制性突触输入(Kantamneni,2015)。SGIP1包含结合AP-2和膜磷脂结合(MP)结合的μ-体积结构域(μHD),该结合结合磷脂酰丝氨酸和磷酸肌醇,从而导致质膜膜变形(Lee等,20211)。MP结构域由外显子4和5编码,它们独立或同时受到替代剪接的影响,在框架中引起了替代性转录本(Durydivka等,2024)。所得的SGIP同工型仍然具有与膜的粘合,但具有变化的蜂窝分布(Dury Durydivka)。这些替代剪接变体的功能性结合尚不清楚。研究丰富的外显子4层SGIP1剪接的影响