在外部刺激上显着,迅速改变其形状和尺寸的结构在多样化的区域中广泛应用。将这些可部署和可变形结构微型化的能力对于需要高空间分辨率或最小入侵性(例如生物力学传感,手术和活检)的田地应用至关重要。尽管对致动机制和材料/结构策略进行了密集的研究,但在高尺度上实现可部署和可变形的结构仍然具有挑战性(例如,几毫米,与许多生物逻辑组织的特征大小相当)。与MIL-Limeter尺度的结构刚度相比,随着尺寸的缩小,驱动材料整合的难度会增加,并且许多类型的致动力变得太小。在这里,我们提出了电磁驱动和设计策略方案,通过利用力学引导的三维(3D)组装来克服这一挑战,以使当电流的金属或磁性膜整合到毫米尺度的结构中,以使受控的lorentz lorentz lorentz lorentz lorentz lorentz或磁性磁力下的外部磁性磁力在外部磁力上产生。tai的设计以定量建模和开发的缩放定律为指导,允许形成低尺度的3D体系结构,这些体系结构通过远程控制的电磁驱动而显着,可逆,迅速地变形。还可以实现具有多个稳定状态的可重构介质结构,其中去除磁场后保持不同的3D配置。的演示功能装置,该功能装置结合了双层膜中的热导率的同时测量的深层感应,这表明了拟议策略对生物医学信号的多模式感应的有希望的潜力。
摘要 - 可构造的对象操纵是一个充满挑战的研究主题,它引起了对机器人领域的日益兴趣,因为已经出现了解决此问题的新方法。到目前为止,文献中的大多数提出的方法都集中在形状控制上。被忽略了应用于物体的应变,因此排除了操纵脆弱产品的大部分工业应用,例如橡胶和塑料物体的脱胚层或食物的处理。这些应用需要在准确性和仔细操纵之间进行权衡,以保留操纵对象。在本文中,我们提出了一种方法来最佳控制线性和平面变形对象的变形,同时还最大程度地减少对象的变形能。首先,我们修改了最初为线性软机器人控制开发的框架,以使其适应可变形的物体机器人操作。为此,我们将问题重新制定为一个优化问题,其中考虑对象的整体形状,而不是仅专注于对象的位置和方向的尖端。然后,我们在成本函数中包含一个能量项,以找到在达到所需形状的同时最小化操纵物体中潜在的弹性能量的解决方案。对于高非线性问题的解决方案众所周知,很难找到对局部最小值的敏感性。我们定义了连接对象的已知初始和最终配置并顺序解决问题的中间最佳步骤,从而增强了算法的鲁棒性并确保解决方案的最佳性。然后使用中间最佳配置来定义机器人的终端效果轨迹,以使对象从初始配置变形为所需的配置。索引术语 - 可通知的对象操纵,机器人技术,形状控制,优化,轨迹生成
美国国防部正在开发的联合精确进近和着陆系统 (JPALS) 旨在使用与其他传感器增强的 GPS 为着陆在陆地和航空母舰上的军用飞机提供准确可靠的引导信息。对于陆基作业,将使用局部差分全球定位系统 (LDGPS) 技术,而对于航空母舰着陆,将采用舰载相对 GPS (SRGPS) 技术。在这两种情况下,最终系统的可靠性和完整性都至关重要。对于 LDGPS 的情况,情况类似于为民航实施的局部区域增强系统 (LAAS) [1],固定参考站生成差分 GPS 数据以发送给进场飞机。虽然 SRGPS 在概念上与 LDGPS 相似,但主要的实际区别在于参考接收器一直在运动,因为它们现在直接安装在航空母舰上。遗憾的是,由于操作限制,参考 GPS 天线无法安装在飞行甲板上飞机的预期着陆点 (TDP)。相反,它们通常安装在船舶的桁臂上。但是,由于进港飞机需要了解其相对于 TDP 的位置,因此需要将 GPS 测量结果几何平移到该点。此外,这种平移必须考虑所有船舶运动,最明显的是船舶的姿态变化。但是,在当前情况下,后一种假设可能没有完全合理。最终,实际上,GPS 参考站数据从桁臂到 TDP 的转换是使用两点之间假定的已知基线向量(例如从调查中获得)、船舶姿态知识以及船舶为刚体的假设来完成的。特别是在转弯或在波涛汹涌的大海中等高动态情况下,船舶可能会变形,本文称为船舶弯曲。
Mercer大学/Mercer University/Mercer University/Mercer University摘要以来,中央加工单元(CPU)提高了功率输出能力并减少了规模。散热器掺入电气设计中,以更快地冷却组件并防止过热,但是在CPU-Heat水槽界面处的接触电阻会阻碍冷却。CPU和散热器面上的表面粗糙度可防止它们完美交配;因此,在界面上会出现低导电率的空气口袋,并防止有效的传热。热界面材料(TIMS)具有较高的热导率,并且可以变形以填充由表面粗糙度产生的空隙。商用机器可用于测试实验性TIM的热性能,但非常昂贵。该顶峰工程项目旨在设计,构建和测试一项具有成本效益的TIM测试仪,该项目仍将测量各种TIMS的明显导热率和热阻抗的准确和精确值。关键字热接口材料,明显的热导率,热阻抗,热传递,设计简介抑制电子设备开发的最重要的挑战之一是微电动组件产生的过多热量积累。中央加工单元(CPU)制造商(例如英特尔)每年都会增强其产品的功能能力,同时降低其物理尺寸。这些连续的改进没有目的。接触这些组件的散热器通常用于快速将热量从设备传递到周围环境。需求比以往任何时候都更大,以开发能够消除这些微电源成分产生的热量的方法和材料。但是,热源面上的表面粗糙度和散热器使它们无法完美交配。图1说明了热源热水接口处的表面粗糙度所产生的情况。
直到 20 世纪 60 年代初,世界上几乎所有汽车都采用了车身框架概念。最初的框架由木材(通常是白蜡木)制成,但钢制梯形框架在 20 世纪 30 年代变得普遍。如今,框架设计仅用于轻型卡车和全尺寸 SUV。框架看起来像一个梯子,两个纵向轨道由几个横向和横向支撑连接。纵向构件是主要的受力构件。它们承受由加速和制动引起的负载和纵向力。横向和横向构件提供对横向力的抵抗力并增加扭转刚度。卡车上使用框架是因为其整体强度和承受重量的能力。框架设计的缺点是它通常很重,并且由于它是二维结构,因此需要提高扭转车身刚度。此外,框架往往会占用大量宝贵的空间并迫使重心上升。车身框架车辆的安全性也会受到影响,因为轨道在撞击下不会变形;也就是说,更多的撞击能量被传递到座舱和另一辆车上。大多数小型车型在 20 世纪 60 年代改用了单体式结构,但这一趋势早在 20 世纪 30 年代就已开始,比如欧宝奥林匹亚。如今,单体式设计是迄今为止占主导地位的车身概念。福特维多利亚皇冠(2011 年停产)是最后一款采用车架一体式概念的乘用车。单体式设计是一种利用外部蒙皮支撑部分或大部分负载的结构技术(与车架一体式概念相反,后者的车架仅用“装饰性”车身面板覆盖)。在这种情况下,整体式底盘是所有机械部件都连接的主要结构元件。但也有“半单体式”变体,例如大众平台概念,其中包括由压制板制成的轻质独立底盘。在这种情况下,底盘和车身外壳都用于提供必要的结构强度。
摘要:磁性小型软体机器人非常适合有针对性的药物管理、微操作和微创手术,因为它们可以非侵入性地进入狭窄的位置。目前可用的磁力操作小型软机器人基于弹性体(硅胶)和流体磁流体或液态金属,但它们有缺点。以弹性体为基础的机器人难以变形,这使得它们在极其狭窄的空间内难以操纵。虽然它们可能更容易变形,但基于流体的机器人形态不稳定,环境适应能力有限。本研究展示的非牛顿流体磁驱动粘液机器人结合了流体机器人显著的变形能力和弹性体机器人的灵活性。这些粘液机器人可以在复杂环境中的不同表面上移动,并通过直径小至 1.5 毫米的微小通道导航。它们执行的任务包括运输、摄取和抓取固体物品。磁性粘液机器人结合了非牛顿流体和弹性体的特性,为靶向药物输送和微创手术提供了有希望的解决方案。这些机器人可以在狭小而复杂的环境中移动,执行运输、摄取和抓取固体物体等任务,并适应各种表面。本综述讨论了磁性粘液机器人的设计、制备和应用,强调了它们在稳定性和生物相容性方面面临挑战的情况下,在彻底改变生物医学操作方面的潜力。关键词:粘液磁机器人,非牛顿流体,靶向药物输送系统,弹性体,磁流体,个性化医疗 1.简介 体积小且对外界信号有反应的机器人更加用户友好且侵入性更小,[1] 使其成为生物医学应用 [2] 的激动人心的候选者,例如具有微创手术和细胞移植的靶向药物输送系统。对于小型机器人控制,外部磁场是一种潜在的解决方案,因为它安全、准确且反应时间快。软弹性体与硬磁颗粒相结合用于制造大多数磁驱动软体机器人。
Brembo CCM 现在让售后市场能够使用市场上最好的制动材料。贝加莫(意大利),2024 年 9 月 10 日——Brembo 在 2024 年法兰克福汽配展上宣布扩大其制动产品系列,推出碳陶瓷材料 (CCM) 制动盘和制动片。自 2000 年初以来,这些产品就作为原装设备出现在市场上,但现在售后市场上有独家制动盘和相关制动片。与铸铁制动盘相比,CCM 的主要优势是重量减轻了 50%。这减轻了汽车的非悬挂重量,从而大大提高了车辆在道路上的出色操控性。Brembo 生产的碳陶瓷材料的第二个重要优势是,在任何条件下,它都能保证高摩擦系数,在所有速度和所有天气条件下制动时都能保持稳定。这使驾驶员能够优化施加在踏板上的压力,从而提高驾驶信心。在持续长时间减速过程中,制动盘所经受的热变化不会影响陶瓷复合材料的摩擦系数,该摩擦系数几乎保持不变,而传统铸铁元件很难实现该摩擦系数。此外,在高温下,Brembo CCM 单元的变形减小可确保与制动衬块完美平面耦合,这种制动衬块专为此类应用而设计,即将上市。铸铁制动盘不具备这一重要品质,铸铁制动盘在反复承受高热应力时容易变形。此外,Brembo CCM 制动盘的表面永远不会腐蚀,即使在冬季接触水或某些路段沉积的盐溶液也是如此。这一特性意味着 Brembo CCM 的耐磨性可确保制动盘在公路使用中的使用寿命约为 150,000 公里,在极限赛道使用(例如法拉利挑战赛)中的使用寿命约为 2,000 公里。与铸铁制动盘相比,Brembo CCM 制动盘在制动过程中会迅速升温,但之后也会同样迅速冷却。这一特性允许在高制动力下重复循环,而不会显著影响摩擦。 Brembo 于 1998 年启动了 CCM 项目,经过 4 年的研究和测试,CCM 制动盘首次应用于法拉利 Enzo。Brembo 为一级方程式赛车开发 CCR 碳制动盘的经验被用于开发碳陶瓷材料制动盘的特定生产技术。
我们希望为您节省时间和金钱!我们向您保证,通读本手册将确保正确安装和安全使用所述产品。 重要警告 CAREL 的产品开发基于数十年的 HVAC 经验、对产品技术创新的持续投资、程序和严格的质量流程(对其 100% 的产品进行在线和功能测试)以及市场上最具创新性的生产技术。尽管产品是根据最先进的技术开发的,但 CAREL 及其子公司无法保证产品的所有方面以及产品随附的软件都符合最终应用的要求。客户(最终设备的制造商、开发商或安装商)承担与产品配置有关的所有责任和风险,以达到与特定最终安装和/或设备相关的预期结果。根据具体协议,CAREL 可充当最终设备/应用的积极调试顾问,但在任何情况下,它都不对最终设备/系统的正确运行承担责任。CAREL 产品是最先进的产品,其操作在产品随附的技术文档中指定,也可以在购买前从网站 www.carel.com 下载。每款 CAREL 产品,就其先进的技术水平而言,都需要设置/配置/编程/调试,才能以最佳方式运行特定应用。未能完成用户手册中要求/指示的此类操作可能会导致最终产品发生故障;CAREL 对此不承担任何责任。只有合格人员才可以安装或对产品进行技术服务。客户必须仅按照与产品相关的文档中描述的方式使用产品。除了遵守本手册中所述的任何其他警告外,还必须注意所有 CAREL 产品的以下警告:• 防止电子电路受潮。雨水、湿气和所有类型的液体或冷凝水都含有腐蚀性矿物质,可能会损坏电子电路。无论如何,产品应在符合手册中规定的温度和湿度限制的环境中使用或存放。• 请勿将设备安装在特别热的环境中。过高的温度可能会缩短电子设备的使用寿命、损坏电子设备并使塑料部件变形或熔化。无论如何,产品应在符合手册中规定的温度和湿度限制的环境中使用或存放。• 请勿尝试以手册中未描述的任何方式打开设备。• 请勿掉落、撞击或摇晃设备,因为内部电路和机制可能会受到不可修复的损坏。 • 请勿使用腐蚀性化学品、溶剂或侵蚀性清洁剂清洁设备。 • 请勿将产品用于技术手册中未指定的用途。 所有上述建议同样适用于控制器、串行板、编程密钥或 CAREL 产品组合中的任何其他附件。 CAREL 采用持续发展的政策。因此,CAREL 保留对本文档中描述的任何产品进行更改和改进的权利,恕不另行通知。手册中显示的技术规格可能会更改,恕不另行通知。 CAREL 对其产品的责任在 CAREL 一般合同条件中指定,可在网站 www.carel.com 上查阅和/或通过与客户达成的具体协议查阅;具体而言,在适用法律允许的范围内,CAREL、其员工或子公司在任何情况下均不对任何收益或销售损失、数据和信息损失、更换商品或服务的成本、物品或人员损害、停机或任何直接、间接、偶然、实际、惩罚性、示范性、特殊或结果性损害(无论是合同损害、合同外损害还是因疏忽造成)或因安装、使用或无法使用产品而产生的任何其他责任负责,即使 CAREL 或其子公司已被警告有此类损害的可能性。
我们希望为您节省时间和金钱!我们向您保证,通读本手册将保证正确安装和安全使用所述产品。重要警告 CAREL 的产品开发基于数十年的 HVAC 经验、对产品技术创新的持续投资、程序和严格的质量流程,以及对其 100% 的产品进行在线和功能测试,以及市场上最具创新性的生产技术。尽管产品是根据最先进的技术开发的,但 CAREL 及其子公司无法保证产品的所有方面以及产品随附的软件都符合最终应用的要求。客户(最终设备的制造商、开发商或安装商)承担与产品配置有关的所有责任和风险,以便达到与特定最终安装和/或设备相关的预期结果。CAREL 可以根据具体协议,充当最终设备/应用的积极调试顾问,但在任何情况下均不对最终设备/系统的正确运行承担责任。CAREL 产品是最先进的产品,其操作在产品随附的技术文档中指定,也可以在购买前从网站 www.carel.com 下载。每个 CAREL 产品,
ekos™和Ekos™ +血管内装置的注意:联邦法律(美国)将此设备限制为通过医生或按照医师的命令出售。仅 Rx。 在使用之前,请参阅完整的“使用说明”,以了解有关指示,禁忌症,警告,预防措施,不良事件和操作员的说明的更多信息。 INTENDED USE The EKOS+ Endovascular Device is intended to be used with EKOS-branded control systems to employ high frequency (1.5 MHz to 1.9 MHz), low-power ultrasound to facilitate the infusion of physician-specified fluids, including procedural fluids and thrombolytics, into the pulmonary and/or peripheral vasculature of adults. 它旨在由血管内介入程序中经历的医生使用。 Ekos+内血管系统不适用于神经血管系统。 是指与医师指定的流体提供的产品插入物,以进行流体特异性制剂,禁忌症,副作用,警告和预防措施。 使用EKOS+血管内系统的指示,由输注导管和超声核心组成,用于以下情况:•超声促进,控制和选择性的,包括嗜血栓塞的医生指定液体的血管内输注,用于治疗肺栓塞和/或深/或深/或深度静脉垂体。 •对医师指定的液体(包括溶栓剂)的控制和选择性输注到肺动脉和/或外围脉管系统中。 禁忌症Ekos+血管内装置禁忌用于:•禁忌溶血和/或抗凝治疗的患者。Rx。在使用之前,请参阅完整的“使用说明”,以了解有关指示,禁忌症,警告,预防措施,不良事件和操作员的说明的更多信息。INTENDED USE The EKOS+ Endovascular Device is intended to be used with EKOS-branded control systems to employ high frequency (1.5 MHz to 1.9 MHz), low-power ultrasound to facilitate the infusion of physician-specified fluids, including procedural fluids and thrombolytics, into the pulmonary and/or peripheral vasculature of adults.它旨在由血管内介入程序中经历的医生使用。Ekos+内血管系统不适用于神经血管系统。是指与医师指定的流体提供的产品插入物,以进行流体特异性制剂,禁忌症,副作用,警告和预防措施。使用EKOS+血管内系统的指示,由输注导管和超声核心组成,用于以下情况:•超声促进,控制和选择性的,包括嗜血栓塞的医生指定液体的血管内输注,用于治疗肺栓塞和/或深/或深/或深度静脉垂体。•对医师指定的液体(包括溶栓剂)的控制和选择性输注到肺动脉和/或外围脉管系统中。禁忌症Ekos+血管内装置禁忌用于:•禁忌溶血和/或抗凝治疗的患者。临床益处陈述EKOS+内血管内装置旨在用于对外科医师脉管系统或肺动脉的控制性和选择性输注(包括血栓溶液)的控制和选择性输注。临床益处可以通过总体临床结果来衡量,包括但不限于治疗PE时右心心功能和血液动力学稳定性的改善,或将医师指定的液体注入外周脉管系统的能力,以及低血压,复发性PE和所有因素的过失率低。•医师确定这种程序的任何情况都可能损害患者的病情。警告以下警告声明为EKOS+血管内系统安全操作提供了重要信息。观察这些说明中提供的所有警告。未能这样做可能会导致患者受伤,操作员受伤或产品损害。•始终验证超声芯和输注导管对的两个电连接器是否连接到相同的连接器接口电缆(CIC)。未能正确连接从超声核心输注导管对到同一CIC的两个电连接器可能会导致超声核的过度操作,从而可能损害患者的脉管系统。•随着灌注毛孔和/或药物流明可能会被阻塞,切勿将血液恢复到药物流明中。•请勿将输注导管“药物”或“冷却剂”输液连接到功率注射器上。•不超过200 psi,适用于任何输注luer。•如果通过输注导管的流动受到限制,请不要试图通过高压输注清除。要么去除输注导管(以及超声波芯,如果到位),以确定和消除障碍物的原因,或用同一模型的新输注导管代替输注导管。•切勿使用输注导管或超声核心的工作长度激活超声波能量。该设备应放置在患者解剖结构中,医师指定的流体穿过药物管腔,冷却剂流过冷却液管腔。否则,可能会导致过热,可能导致烧伤,超声核心损害和/或中断治疗。•从输注导管中删除超声波芯之前,请务必关闭超声波。否则,可能会导致过热,可能导致烧伤,超声核心损害和/或中断治疗。使用受损的超声核心可能会导致血管创伤。•在输送到输注导管中时,请勿变形或扭结超声波芯。如果在任何时候扭结了超声波芯,请不要尝试使用超声波核,因为扭结可能会导致使用过程中的性能或断裂降解。•切勿尝试将超声波芯与兼容Ekos+ Infusion导管以外的任何导管使用超声波芯。•不要尝试使用不兼容的工作长度(即135厘米输注导管和106 cm超声波核心,反之亦然)。不正确的匹配可能对患者有害,需要进行其他干预或手术。未能这样做可能会导致并发症。•切勿将超声波芯放入患者中,而没有先前放置输注导管。•切勿将电连接器或输注导管的灰色壳体浸入流体中。•请勿使用带有旋转止血瓣的介绍器鞘来引入EKOS+内血管内装置。通过旋转止血瓣插入或去除可能会导致射线照相带,拉伸或其他导管的其他损坏。•Ekos+内血管系统不适用于神经血管系统。预防措施在使用之前仔细阅读所有指令。观察所有这些说明中指出的所有预防措施。•在引入之前,每次从血管系统中取出输注导管时,输注导管都应冲洗。•如果通过输注导管的流动受到限制,请不要试图通过高压输注清除。要么去除输注导管(以及超声波芯,如果到位),以确定和消除障碍物的原因,或用同一模型的新输注导管代替输注导管。•EKOS+设备旨在在操作的前24小时内提供最佳的声学输出。•EKOS+设备仅应用于注入医师指定的流体,包括血栓溶液。其他类型的流体,除溶栓和程序液(肝素化盐水,盐水,对比培养基等)之外。),尚未评估与Ekos血管内装置一起使用。•该设备不是设计用于外围血管扩张器的设计。•在正常使用期间,超声能量可能导致治疗区的温度升高。导管表面温度最大为43°C。•应通过药物端口进行治疗剂,例如溶栓剂,而程序流体(例如盐水和造影剂)应通过冷却液端口或中央管道进行管理。•EKOS+内血管内设备仅在EKOS控制单元4.0上运行。它们与早期的Ekos / Ekosonic控制单元不兼容。如果将EKOS+设备连接到Ekos Cu 4.0以外的控制单元,则EKOS+设备将无法由控制单元识别,并且需要交换设备或控制单元才能继续进行。按照指示使用时可能与EKOS+内血管内系统有关的潜在不利事件包括但不限于:•过敏反应(对比度,设备或其他)•心律不齐•烧伤•心脏污染物•心脏污染物•心脏创伤•心脏创伤•死亡•死亡•栓塞,栓塞,栓塞,栓子,空气,pla,pla•pla•inse,••••••••••其他•••其他• Infection/Sepsis • Ischemia/Necrosis • Need for additional intervention or surgery • Pain • Pneumothorax • Renal Insufficiency/Failure • Respiratory Failure • Thrombosis/Thrombus • Vasospasm • Vessel Occlusion • Vessel Trauma (AV fistula, dissection, perforation, pseudoaneurysm, rupture or injury) 92882188 A.1 All other trademarks are the其各自所有者的属性。按照指示使用时可能与EKOS+内血管内系统有关的潜在不利事件包括但不限于:•过敏反应(对比度,设备或其他)•心律不齐•烧伤•心脏污染物•心脏污染物•心脏创伤•心脏创伤•死亡•死亡•栓塞,栓塞,栓塞,栓子,空气,pla,pla•pla•inse,••••••••••其他•••其他• Infection/Sepsis • Ischemia/Necrosis • Need for additional intervention or surgery • Pain • Pneumothorax • Renal Insufficiency/Failure • Respiratory Failure • Thrombosis/Thrombus • Vasospasm • Vessel Occlusion • Vessel Trauma (AV fistula, dissection, perforation, pseudoaneurysm, rupture or injury) 92882188 A.1 All other trademarks are the其各自所有者的属性。