摘要。- 目的:这项研究的目的是鉴定枢纽基因并揭示糖尿病性视网膜病(DR)的骨质机制。材料和方法:我们在我们的研究中使用了基因表达综合(GEO)DATASET GSE60436。在筛选差异表达的基因(DEG)后,我们形成了基因和基因组(KEGG)功能分析的基因本体学(GO)和京都百科。随后,使用搜索工具来检索相互作用的基因(String)数据库并使用Cytoscape软件进行访问,并使用搜索工具进行了搜索工具来构建蛋白 - 蛋白质相互作用(PPI)网络。最后,我们通过CytoHubba插件确定了10个集线器基因。结果:总共确定了592摄氏度,包括203个上调的基因和389个下调基因。DEG主要富含视觉感知,光感受器外部段膜,视网膜结合和PI3K-AKT信号通路。通过构建蛋白质 - 蛋白质间的作用(PPI)网络,最终确定了10个中心基因,包括CNGA1,PDE6G,RHO,ABCA4,PDE6A,PDE6B,PDE6B,NRL,RPE65,RPE65,GUCA1B和AIPL1。结论:CNGA1,PDE6G,RHO,ABCA4,PDE6A,PDE6B,NRL,RPE65,GUCA1B和AIPL1可能是潜在的生物标志物,而治疗性TAR-可用于DR。
抽象作物植物对压力的反应涉及基因表达模式的变化。这种基因调节的复杂过程取决于顺式和反式作用成分的存在。理解与植物对胁迫反应相关的基因表达变化的关键步骤之一始于鉴定差异表达基因(DEGS)启动子中“保守域”的鉴定。保守域可以通过为转录因子提供结合位点在基因调节中起关键作用。在这项研究中,我们旨在确定149摄氏度的启动子中的顺式调节元件(CRE),这些元素在两个水稻品种的转录组分析中被鉴定出来:cypress and Lagrue。这两个水稻品种根据其承受热应激的能力,在高夜晚(HNT)下分别表现良好。可以预期,受Hnt应力向上或向下调节的DEG要么在其启动子中表现出一组共享的CRE,要么在特定DEG模式中共有多态模式,其识别可以帮助理解植物对压力的各种反应。将使用多种计算方法来找到与水稻中HNT应力有关的顺式作用元件 /转录激活基序。这些信息将在机器学习算法中利用,以开发针对繁殖目的操纵基因的预测模型,例如提高谷物质量和产量,从而增强了水稻植物对高夜间温度的韧性,并为水稻作物的整体适应性做出了贡献。
摘要简介:结直肠癌(CRC)是致命的癌症之一,表明需要鉴定新的生物标志物以在早期阶段检测患者。RNA和microRNA测序,以鉴定差异表达的基因(DEG),然后在CRC患者中进行验证。方法:从631个样品中的全基因组RNA测序,包括398例患者和233例正常病例,从癌症基因组地图集(TCGA)中提取。使用deseq套件在R中鉴定了DEG。使用Kaplan -Meier分析评估生存分析以鉴定预后生物标志物。通过机器学习算法(例如深度学习,决策树和支持向量机)来确定预测性生物标志物。评估了生物学途径,蛋白质蛋白质相互作用(PPI),DEG的共表达以及DEG和临床数据之间的相关性。此外,使用Combioroc包装评估诊断标记。最后,CRC患者的实时PCR验证了候选TOPE评分基因。结果:生存分析揭示了五个新型的预后基因,包括KCNK13,C1ORF174,CLEC18A,SRRM5和GPR89A。39个上调,40个下调的基因和20个miRNA通过SVM检测到高精度和AUC。KRT20和FAM118A基因的上调以及LRAT和ProZ基因的下调在晚期阶段的系数最高。此外,我们的发现表明,三个miRNA(miR-19b-1,miR-326和miR-330)在晚期阶段上调。C1ORF174作为一种新基因。组合曲线分析表明,C1ORF174-AKAP4-DIRC1-SKIL-SCAN29A4的组合可以将其视为具有敏感性,特异性和AUC值0.90、0.94和0.92的诊断标记。结论:机器学习算法可用于识别与疾病发病机理有关的关键失调基因/miRNA,从而导致早期患者的检测。我们的数据还证明了C1ORF174在结直肠癌中的预后价值。
子宫内膜异位症是子宫内膜型粘膜在子宫腔外的常见原因,如疼痛时期,慢性骨盆疼痛,性交和不育的疼痛等症状。但是,还限制了子宫内膜异位症的早期诊断。本研究的目的是识别和验证子宫内膜异位症的关键生物标志物。下一代测序(NGS)数据集GSE243039是从基因表达综合(GEO)数据库中获得的,并确定了子宫内膜异位症和正常对照样品之间差异表达的基因(DEGS)。进行了DEG,基因本体(GO)和Reactome途径富集分析后。此外,构建了蛋白质蛋白质相互作用(PPI)网络,并使用人类积分蛋白质蛋白相互作用参考(HIPIE)数据库和Cytoscape软件分析模块,并鉴定出集线器基因。随后,使用miRNET和网络分析员工具构建了miRNA和集线器基因之间的网络,并预测了可能的关键miRNA和TFS。最后,使用接收器工作特性曲线(ROC)分析来验证集线器基因。在子宫内膜异位和正常对照样品之间筛选了总共958摄氏度,其中包括479个高度调节的基因和479个下调的基因。go and reactome途径富集分析的958摄氏度表明它们主要参与多细胞生物过程,发育过程,GPCR和肌肉收缩的信号传导。这项研究使用了生物信息学技术来探索潜在和新颖的生物标志物。对PPI网络和模块的进一步分析确定了10个中心基因,包括VCAM1,SNCA,PRKCB,ADRB2,FOXQ1,MDFI,ACTBL2,PRKD1,DAPK1和ACTC1。可能的目标miRNA,包括HSA-MIR-3143和HSA-MIR-2110以及包括TCF3和时钟在内的目标TFS。这些生物标志物可能会为子宫内膜异位症的早期诊断,治疗和监测提供新的想法和方法。
活性氧主要是DCM小鼠中的上调(图2d)。GO分析发现上调节的DEG与某些生物学过程有关,其中包括ATP代谢过程,线粒体组织和线粒体ATP合成,而下调的DEG与生物学过程有关(包括免疫效应的调节)(图2e)。由于DCM可以通过自适应和先天免疫系统的改变来促进DCM,因此我们进一步研究了DCM小鼠模型和控制模型之间左心室中免疫细胞浸润的差异。结果表明,与对照相比,DCM激活的CD8 + T细胞浸润显着增加,而记忆B细胞,NKT天然杀伤细胞,单核细胞和肥大细胞的浸润显着降低,表明DCM中先天免疫的概况受损(图2F)。
fi g u r e 4皮肤DEG具有比皮肤DSG更大的基因共表达连通性,但DSGS的表达更高。(a)小提琴图显示了转录组,DSG和DEG中所有基因的总连通性(ktotal)值的分布。(b)小提琴图显示了转录组,DSG和DEG中所有基因的基因表达值的分布。表达值以每百万(TPM)的转录本为标准化。为了视觉清晰度,在“所有基因”类别中的表达值超过200 tpm的635个异常值不包括在图中。两者均为DSG和DEG的六个基因均不包括在任何分析中。在这两个图中,中间的白色钻石代表分布的中值,每个成对比较的置换测试的结果均显示为星号(*p <.05; *** p <.001; **** p <.0001)或ns(不重要)。
目的:头颈部鳞状细胞癌 (HNSCC) 具有较高的局部和远处转移率。在肿瘤组织中,肿瘤细胞与肿瘤微环境 (TME) 之间的相互作用与癌症的发展和预后密切相关。因此,筛选 HNSCC 中的 TME 相关基因对于了解转移模式至关重要。方法:我们的研究主要依赖于一种名为使用表达数据估计恶性肿瘤中的基质和免疫细胞 (ESTIMATE) 的新算法。从 TCGA 数据库中获取外显子模型每百万映射片段的每千碱基片段 (FPKM) 数据和 HNSCC 临床数据,并确定 HNSCC 组织的纯度以及基质和免疫细胞浸润的特征。此外,根据免疫、基质和 ESTIMATE 评分筛选差异表达基因 (DEG),并评估它们的蛋白质-蛋白质相互作用 (PPI) 网络和 ClueGO 功能。最后,确定了 HNSCC 中与免疫相关的 DEG 的表达谱。在高侵袭性口腔癌细胞系 (SCC-25、CAL-27 和 FaDu) 和口腔癌组织中验证了差异基因表达。结果:我们的分析发现免疫和 ESTIMATE 评分均与 HNSCC 的预后显着相关。此外,使用 Venn 算法进行交叉验证显示 433 个基因显着上调,394 个基因显着下调。所有 DEG 都与 ESTIMATE 和免疫评分相关。使用通路富集分析观察到细胞因子-细胞因子受体相互作用和趋化因子信号通路的富集。在分析了 PPI 网络的关键子网络后,我们初步筛选了 25 个基因。生存分析揭示了 CCR4、CXCR3、P2RY14、CCR2、CCR8 和 CCL19 与生存的关系以及它们与 HNSCC 中免疫浸润相关转移的关系。结论:使用 ESTIMATE 对基质和免疫细胞进行评分后,筛选了相关 TME 相关基因的表达谱,并确定了与生存相关的 DEG。这些 TME 相关基因标记物可作为 HNSCC 中的预后指标和指示转移性状的标记物,具有宝贵的实用性。
海浪力量是间歇性可再生能源的最持久,最集中和可预测的形式之一。全球估计的资源量达到近3tw的年平均功率,波浪能在将来可能涵盖间歇性可再生能源混合的显着部分。从波浪中收集能量非常具有挑战性,并且该行业仍然不成熟,世界各地只有少数商业前系统。现有的波能转换器(WEC)复杂而昂贵,构建,安装和维护。它们也容易受到海洋环境(经历大型冲动载荷和腐蚀)的攻击,并显示出有限的能量转换效率。在这种情况下,介电弹性体发生器(DEGS)可以提供使波能利用的技术突破。DEG是由不可压缩的弹性介电层和兼容的电极制成的可变形电容器,可用于通过可变电容静电生成来将机械能将其转换为电能。1
在C.892C> T(P.ARG298TRP)上,转录阻遏核与伏隔核核的错义突变在染色体19上导致严重的神经发育延迟(Schoch等,2017)。为了建模这种疾病,我们用同源突变(NACC1 +/R284W)设计了第一个小鼠模型,并检查了E17.5到8个月的小鼠。两个性别的体重增加,癫痫样排放量延迟,并改变了皮质脑电图,行为癫痫发作和明显的后肢紧握的功率谱分布;女性在一个开放式场上显示thigmotaxis。在皮质中,NACC1长同工型(含有突变)从3个月增加到6个月,而短的同工型(在人类中不存在,在小鼠中缺乏AAR284),从产后日开始稳步上升(p)7。核NaCC1免疫反应性在皮质锥体神经元和含有中间神经元的Parval-bumin的核NACC1免疫反应性升高,而在星形胶质细胞或寡头胶质细胞核中不增加。星形胶质细胞过程中的神经胶质纯酸性蛋白质染色减少。P14突变小鼠皮层的 RNA-SEQ揭示了1,000多种差异表达的基因(DEGS)。 神经胶质文字被下调并上调突触基因。 来自上调DEG的顶级基因本体术语与结合后和离子通道功能有关,而下调的DEG富含与代谢功能,线粒体和核糖的术语相关的术语。 突触蛋白的水平已更改,但突触接触的数量和长度在3个月时没有改变。 纯合性恶化了一些表型,包括产后存活,体重增加延迟和核NACC1的增加。RNA-SEQ揭示了1,000多种差异表达的基因(DEGS)。神经胶质文字被下调并上调突触基因。来自上调DEG的顶级基因本体术语与结合后和离子通道功能有关,而下调的DEG富含与代谢功能,线粒体和核糖的术语相关的术语。突触蛋白的水平已更改,但突触接触的数量和长度在3个月时没有改变。纯合性恶化了一些表型,包括产后存活,体重增加延迟和核NACC1的增加。该小鼠模型模拟了一种罕见的自闭症形式,对于评估病理生理学和治疗干预靶标的是必不可少的。
主要结果:在100名化粪池患者的180个芯片中,我们在ICU入院后的第1天和第2-3天都在幸存者与非活物中的39个上调和2个下调差异表达的基因(DEG)。我们将上调DEG的集线器基因以及CX3CR1和IL1B结合了计算表达比。CDK1/CX3CR1比率具有最佳性能,可以预测全因ICU死亡率,在ROC曲线(AUROC)下的面积为0.77(95%置信区间[CI] 0.88-0.66),在第2天,在ICU下,在ICU下,第1天,0.82(95%CI 0.91-0.72)的面积为0.82(95%CI 0.91-0.72)。这种性能比每个单独的mRNA生物标志物要好。在外部验证队列中,使用RT-QPCR测量的CDK1/CX3CR1比的预测性能与第1天测量时乳酸的预测性能相似,在第2-3天测量时较高。结合乳酸水平和CDK1/CX3CR1比率,我们确定了3组具有ICU死亡率风险增加的患者,范围为9%至60%,中级风险群体死亡率为28%。