地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
仪器发现(SHERIF)系统的独立危害评估是一组新型算法和相关的框架,旨在支持多个LIDAR扫描中的数字高程图(DEM)的产生,并执行HAX-ARD检测(HD)和安全位点识别(SSI),而没有依赖于其他板上的系统。Sherif可以使用几种技术在行星表面的不同激光扫描上执行强大的3D键提取和点云配准(PCR),以生成在轨迹过程中演变的DEM。该框架还支持各种危险检测和安全位点识别算法,这些算法可用于生产的不断发展的DEM。sherif具有强大而模块化的结构,使用户在选择和实施哪个关键点标识,PCR和HD/SSI算法时具有高度的挠性性,同时保持核心Sherif框架的数据产品和传感器独立性。Sherif最近通过在NASA Johnson太空中心的模拟和硬件实验测试进行了评估。
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
5.B.iii. GLOBE 的地理参考 ...................................................................................... 64 5.B.iv. GLOBE 与其他可用 DEM 的比较 .............................................................. 64 5.B.v. 随着更多 DEM 的创建,GLOBE 的发展 ........................................................ 65 6. 数字高程数据的缺陷 ............................................................................................. 66 6.A. 网格间距和分辨率 ............................................................................................. 66 6.B. 地形细节和准确性 ............................................................................................. 67 6.C. 生产工件 ............................................................................................................. 68 7. 准确性 ............................................................................................................................. 69 7.A. 水平准确性 ............................................................................................................. 69 7.A.i. 来自栅格数据源的数据 ............................................................................. 69 7.A.ii. 来自制图源的数据 ............................................................................. 70 7.B.垂直精度 ................................................................................................................ 70 7.B.i. 绝对精度:来自栅格源的数据 .............................................................. 70 7.B.ii. 绝对精度:来自 Cartog 的数据
地形建模,即地面量化的实践,是地球科学、数学、工程学和计算机科学的综合体。这门学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地面形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地理信息系统 (GIS) 生成的数字高程模型 (DEM) 已被证明是水文研究中的有用工具,除其他外,它有助于划定集水区、确定排水模式和流径以及确定径流。它们在地形相对平坦的地区特别有价值,因为这些地区通常很难完成这些任务。然而,由于湿地的高程差异通常低于或刚好在标准地形图的等高线间隔范围内,标准地形图的等高线间隔通常为 20 米,某些地区为 5 米,因此后者无法提供足够的细节。这意味着湿地研究通常很难获得足够详细的地形信息。相对于许多研究预算而言,针对特定地点的高分辨率地形调查过于昂贵,无法成为可行的替代方案。本文以喀斯特泥炭地周围约 12 平方公里的研究区域为基础,介绍了一种以 1 米为间隔、低成本从 Google Earth TM 卫星图像中检索所需高分辨率高程数据的方法。本文介绍了使用 GIS ArcDesktop™ 捕获和处理数据以生成高分辨率等高线图和 DEM 的程序。为了保证质量,将生成的地图与总局测绘局 (CDSM) 发布的 5 米和 20 米等高线间隔标准地形图 (1:50000) 进行视觉比较。c 之后
研究了地形表示误差(ETR)的概念和计算,并将DEM总误差作为全球DEM评估的精度指标。开发了一种基于表面定理(SMTS)的表面建模方法。通过数值试验和实际示例,比较分析了SMTS与ARCGIS 9.1中执行的经典插值方法(包括IDW,SPLINE和KRIGING)在采样和插值误差以及DEM总误差方面的模拟精度。数值试验表明,SMTS比经典插值方法精度高得多,而ETR对SMTS精度的影响比经典插值方法更差。在实际示例中,使用SMTS以及三种经典插值方法构建了DEM。结果表明,虽然SMTS比经典插值方法更准确,但实际测试表明精度损失较大。总 DEM 误差不仅包括采样和插值误差,还包括 ETR,可以被视为全球范围内 DEM 评估的良好精度测量。SMTS 是 DEM 构建的另一种方法。& 2010 Elsevier Ltd. 保留所有权利。
13.摘要(最多 200 个字)1997 年红河洪水对明尼苏达州和北达科他州红河谷大部分地区以及加拿大马尼托巴省的住宅、商业、工业、农业和公共财产造成了灾难性的破坏。洪水过后,美国和加拿大政府要求国际联合委员会 (IJC) 分析洪水的成因和影响,并提出减少未来洪水影响的方法。为支持 IJC 的研究,美国陆军工程兵区圣保罗请求美国陆军工程兵研究与发展中心 (ERDC)、地形工程中心 (TEC) 的协助,以评估新兴的机载遥感技术,以应用于危机管理支持。使用干涉合成孔径雷达 (IFSAR) 和激光探测与测距 (LIDAR) 收集系统进行了一项试点研究,以确定所需的正确技术组合。该研究的主要目标是开发和实施数据融合技术,以合并 IFSAR 和 LIDAR DEM,并测试每个 DEM 上的水文流量。这项研究的结果将为红河工作组提供在此项目期间测试的每种技术的成本比较以及执行流域剩余收集工作的建议列表。