Timothy W. Simpson Paul Morrow 工程设计与制造教授 增材制造与设计研究生项目主任 直接数字沉积创新材料处理中心 (CIMP-3D) 联席主任 宾夕法尼亚州立大学,宾夕法尼亚州立大学公园分校
摘要 增材制造设计 (DFAM) 旨在开发利用增材制造 (AM) 工艺独特功能的设计,以实现效益最大化。本文重点介绍了 DFAM 研究前沿的几个问题。首先,描述了在计算设计过程中需要包括制造时的机械和其他物理特性,例如拓扑和形状优化以及生成设计。AM 工艺很少生产具有均匀成分和各向同性特性的零件,因此设计方法和工具不应假设它们。其次,针对 AM 工艺链进行设计的主题很重要,因为 AM 制造的零件通常需要后处理操作,例如支撑去除、精加工、热处理等。DFAM 方法需要结合整个工艺链,而不仅仅是 AM 工艺,本文以金属粉末床熔合为例进行了探讨。第三,通过彻底重新思考产品架构,可以实现 AM 的最大优势。电动摩托车和辅助外骨骼的示例说明了这些想法和潜在优势。最后,提出了一些关于 4D 打印设计的想法,特别是利用形状记忆效应的 3D 打印变形和可部署系统。
• AM = 增材制造 • DED = 定向能量沉积 • DfAM = 增材制造设计 • PBF = 粉末床熔合 • LP-DED = 激光粉末 DED • L-PBF = 激光粉末床熔合 • EB-PBF = 电子束粉末床熔合 • LW-DED = 激光丝 DED • AW-DED = 电弧丝 DED • EB-DED = 电子束 DED • AFSD = 增材搅拌摩擦沉积 • UAM = 超声波增材制造
• AM = 增材制造 • DED = 定向能量沉积 • DfAM = 增材制造设计 • PBF = 粉末床熔合 • LP-DED = 激光粉末 DED • L-PBF = 激光粉末床熔合 • EB-PBF = 电子束粉末床熔合 • LW-DED = 激光丝 DED • AW-DED = 电弧丝 DED • EB-DED = 电子束 DED • AFSD = 增材搅拌摩擦沉积 • UAM = 超声波增材制造
增材制造技术:3D 设计和生产成就证书 增材制造技术成就证书:3D 设计和生产提供计算机辅助设计 (CAD)、增材制造设计 (DfAM)、逆向工程原理、快速 3D 打印原型制作的基础知识,以及增材制造实验室技术人员所需的知识、技能和能力。学生将学习最常用的 3D 打印材料和技术的行业标准实践,包括熔融沉积成型 (FDM)、立体光刻 (SLA)、材料喷射、选择性激光烧结 (SLS) 和直接金属激光烧结 (DMLS)。此外,该课程的学生将掌握 3D 打印系统操作、维护和服务的基础知识。证书课程通过讲座、演示和基于项目的学习相结合的方式,侧重于增材制造 (AM) 的考虑因素和快速原型制作应用。学生将探索 AM 中的设计和材料考虑因素,配置系统,构建原型并创建功能部件。该证书为个人从事先进制造业领域的一系列现有和新兴职业做好准备,包括 CAD 设计师、增材制造技术员和应用工程技术员。
抽象使用金属添加剂制造(AM)的一种经常引用的好处是设计和产生适合最终用途零件所需功能和性能的复杂几何形状。在这种情况下,激光粉床融合(LPBF)是合适的AM过程。由于可访问性问题和降低成本潜力,这种“复杂” LPBF零件应使用净形制造,而最少使用后处理加工。但是,LPBF的固有表面粗糙度可能会阻碍零件的性能,尤其是从结构的角度,尤其是在疲劳方面。因此,工程师必须了解表面粗糙度对零件性能的影响以及如何在设计过程中考虑它。本文介绍了与LPBF表面粗糙度有关的研究的系统文献综述。通常,研究重点是表面粗糙度与LPBF构建参数,材料特性或后处理之间的关系。关于如何考虑AM设计过程中如何考虑表面粗糙度的设计支持的研究很少。因此,考虑到其他研究领域突出了表面粗糙度的影响,对这种支持的未来研究很重要。关键字:激光粉床融合,表面粗糙度,添加剂制造设计(DFAM),X(DFX)设计,设计工程联系:Obilanade,DidunoluwaabiodunLuleå技术产品创新瑞典
MIS6301 MIS6301高级addivitive Intivitive Innovation Design和Metal Productions。它通过设计,层压解释以及材料和设备和计算机分析的分析来获取生产的整体技术并获得了优化过程。还使用激光和金属粘合剂喷气机开发了激光制造设备的开发和最新技术,并在整个层压制造过程中培养了与基础设施技术相关的先进知识。