四重 DFCS 架构 RDFCS 设施设置 保证方法的互补性 多级测试基础 数字飞行系统生命周期架构 设计任务 增强型电传操纵控制律 基线系统架构 通道逻辑 转换图 同步谓词/转换网络 谓词/转换网络细节 谓词/转换网络 模拟输出 顶层软件控制图 DFCS 可靠性框图 飞机模拟框图 托盘化 DFCS 控制律框图 免费 RSS 飞机时间历史软件控制流程图 增强型 RSS 飞机时间历史多级测试 收尾自动测试方案 正常通道同步时间历史启动通道同步时间历史稳定性无俯仰速率增强响应稳定性无攻角增强响应
四重 DFCS 架构 RDFCS 设施设置 保证方法的互补性 多级测试基础 数字飞行系统生命周期架构 设计任务 增强型电传操纵控制律 基线系统架构 通道逻辑 转换图 同步谓词/转换网络 谓词/转换网络细节 谓词/转换网络 模拟输出 顶层软件控制图 DFCS 可靠性框图 飞机模拟框图 托盘化 DFCS 控制律框图 免费 RSS 飞机时间历史软件控制流程图 增强型 RSS 飞机时间历史多级测试 收尾自动测试方案 正常通道同步时间历史启动通道同步时间历史稳定性无俯仰速率增强响应稳定性无攻角增强响应
管理员摘要 209 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 空速指示器故障 252 ... . . . . . . . . . . . . . . . . . . . . . . . . 非对称翼后掠着陆空速图 118 ... . . . . . . . . . . . . . . . . . . . . . . . . BINGO 189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 侧风图封底内页 . . . . . . . . . . . . . . . . DFCS 飞行中故障矩阵卡 301 . . . . . . . . . . . . . . . . . DFCS 上升/下降状态卡 311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 紧急现场拦停指南 168,169 . . . . . . . . . . . . 着陆进近空速(14 单位) — 单引擎 183 . . . . . . . . . . . . . . . . . . . . . . . . . . . 着陆进近空速(15 单位) 255 . . . . . . . . . . . . . .着陆距离地面滑行� 襟翼放下 257,258..........................................................................................................................................................................................................................................................................襟翼收起 259,260..........................................................................................................................................................................................................................................................................................................................起落架故障指南 167..........................................................................................................................................................................................................................搜救现场指挥官检查表 313. .... .... .... .... .... .... 起飞速度和地面滑行距离 — 军用功率 — 襟翼放下 — 重心 = 6% 250. .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... 军用功率 — 襟翼放下 — 重心 = 16.2% 251. .... .... .... .... .... .... .... .... .... .... .... .... .... .... . . . . . . 米尔
本报告涵盖了作者认为特别重要的特定领域,特别是测试准备和数据分析部分。适当的准备和数据分析是任何成功飞行测试计划的基石,因此在本报告中得到了广泛的关注。此外,测试 DFCS 时潜在错误的后果可能是灾难性的,导致飞机损失或生命损失。由于这种类型的飞行测试通常很危险,因此测试团队有责任仔细规划和执行该计划。测试团队必须了解飞机预计会做什么、正在做什么以及两者的原因。有了这些知识,DFCS 飞行测试团队可以在执行测试程序期间做出适当的决定。在不最小化所涉及的其他领域的前提下,作者认为准备和数据分析是测试的两个最重要方面,因此强调这些领域。
尽管异步计算机操作的研究并非 AFT1 计划的主要目标,但研究异步计算机操作已成为一项主要活动。异步架构概念的初衷是提高 EM1 免疫力和整个系统的容错能力。人们认为,随着设计的成熟,对异步操作(可测试性、数据一致性和不确定操作)的担忧将得到缓解。在设计和鉴定 DFCS 方面投入了大量工程努力,并且对异步计算机操作有了更多的了解。尽管在鉴定过程中投入了大量精力和改进,但对可测试性的担忧仍然存在,因为在飞行测试中发生了与异步操作相关的异常。异步操作,加上解耦控制和双重故障/操作能力的复杂性,导致设计任务增加、鉴定期延长和可测试性边际降低。在扩展包络线后,对 DFCS 的任务性能进行飞行测试评估未发现任何与异步操作相关的新异常。
本报告涵盖了作者认为特别重要的特定领域,特别是测试准备和数据分析部分。适当的准备和数据分析是任何成功飞行测试计划的基石,因此在本报告中得到了广泛的关注。此外,测试 DFCS 时潜在错误的后果可能是灾难性的,导致飞机损失或生命损失。由于这种类型的飞行测试通常很危险,因此测试团队有责任仔细规划和执行该计划。测试团队必须了解飞机预计会做什么、正在做什么以及两者的原因。有了这些知识,DFCS 飞行测试团队可以在执行测试程序期间做出适当的决定。在不最小化所涉及的其他领域的前提下,作者认为准备和数据分析是测试的两个最重要方面,因此强调这些领域。
通过 ELISA 测量 PD-1-001 和 CD73/PD-1-001 与生物素化 hPD-L1 的结合;还通过功能性 hPD-1 阻断试验 (Promega #J1250) 评估了测试样品。通过表面等离子体共振 (SPR) (ACROBiosystems) 评估了 CD73 结合。在表达人类 PD-1 和 PD-L1 的转基因小鼠中评估了疗效,这些小鼠患有 MC-38 (hPD-L1) 肿瘤 (genOway,法国) (n=10)。以 10 6 个细胞的浓度注射 MC-38 (hPD-L1) 细胞,与 Matrigel (Corning) 以 1:1 混合。当肿瘤大小为 25 – 75 mm 3 时开始治疗。测试样品每周腹腔注射两次,持续 3 周。作为比较物,包括派姆单抗生物仿制药 (Bio-X-Cell #SIM0010)。记录肿瘤体积,并通过 t 检验 (Mann-Whitney) 或双向方差分析进行统计分析。 *p≤0.05;**p≤0.01。在 BALB/c 小鼠中确定测试样品的 PK。以 10 mg/kg (n=2) 的剂量腹腔注射 DFC,并在一周内 (168 小时) 的不同时间点收集血浆。通过间接 ELISA 技术 (使用 CD73 或 hPD-1-001 捕获) 和夹心 ELISA (使用人类 Fc 捕获) 确定 DFC 的血浆水平。在混合淋巴细胞反应 (MLR) 测定中确定 DFC 的活性。简而言之,人类 CD14 + 单核细胞分化为成熟的树突状细胞,并在有/无 AMP (300 µM) 的情况下与来自三个不同供体的 CD4 + 细胞一起孵育。四天后,对上清液进行细胞因子分析 (INF-γ、IL-2、TNF-α)。
多式联运物流园区的发展为改善运输物流、改善基础设施和促进营商便利 (EoDB) 提供了巨大的潜力。仓库和相关实物资产的标准化对于确保全球兼容性和竞争力至关重要,推动整个行业采用最佳实践。国家物流政策、PM Gati Shakti 国家总体规划和多式联运物流园区 (MMLP) 的发展等政府举措对提高印度物流网络的效率起到了重要作用。专用货运走廊 (DFC) 在支持蓬勃发展的基础设施和扩大国际贸易方面发挥着至关重要和变革性的作用。这些政策旨在降低物流成本并提高运营效率,确保印度在全球舞台上保持竞争力。
糖尿病 (DM) 是全球范围内一种主要的健康问题,且发病率日益上升——目前全球有 4.2 亿糖尿病患者,预计 2030 年将达到 5.7 亿,到 2045 年将进一步增加到 7 亿。糖尿病是全球第九大死亡原因,自 2000 年以来增加了 70% [1,2]。糖尿病足并发症 (DFC) 是全球发病率和死亡率日益增加的原因,影响着 4000 万至 6000 万人 [3]。DFC 的全球患病率从大洋洲的 3% 到北美洲的 13% 不等,全球平均为 6.4% [3,4]。然而,只有不到三分之一的医生能够辨别糖尿病相关周围神经病变的迹象,因此延迟或漏诊增加了 DFC 的高发病率和死亡率 [3]。很少有医护人员 (HCW) 意识到定期检查患者足部和推广基本足部护理实践的必要性 [3, 5];除非出现病变,否则常规足部检查的需求很少被察觉,低风险患者在就诊期间几乎得不到任何关于足部护理的信息 [6, 7]。这导致了对医护人员和卫生系统的不信任,因为不了解情况的患者只有在患上糖尿病足溃疡 (DFU) 时才会意识到糖尿病的严重性和足部并发症的危险性 [6]。Deguchi 等人 (2021) 还发现,医患沟通不畅导致治疗满意度低 [8]。进修课程有助于增强医护人员进行足部筛查和患者足部护理教育的信心 [9-11]。医护人员在向患者、患者家属和整个社区推广糖尿病自我护理和足部护理实践方面发挥着重要作用;因此,应使用能够提高患者健康素养的语言来提供糖尿病和足部护理建议,这种建议在文化上是适当的,并且患者及其家属可以遵循[10]。许多医护人员未能与患者建立良好的关系,也缺乏整体护理,因为在繁忙的诊所里,预约往往很匆忙[12],而且护理主要集中在药物上,没有考虑或支持患者在处理糖尿病及其并发症时面临的情感挑战[11]。在多学科方法中,来自不同学科的医疗建议使患者感到困惑,不合时宜的预约会给患者及其家属带来额外费用,这也是患者放弃治疗的原因之一[10]。据广泛报道,医护人员经常忽视检查患者的足部,他们忽视了对患者的足部护理教育或未能强化患者的知识;因此患者认为足部护理的优先级较低,也未能实践[10,11]。为了帮助患者更好地理解足部自我护理实践,可以通过演示和直观展示足部并发症来增强患者的能力;在全面足部检查过程中进行连续评论,让患者放心并了解足部护理的内容[6]。这符合结构化足部护理教育的建议,旨在提高患者足部护理知识和自我护理行为[13]。无论糖尿病持续时间长短,都应给予患者充足的时间提问和澄清任何剩余疑问[6] [14]。与患者建立良好的关系同样重要,因为值得信赖的医患关系可以鼓励治疗依从性,提高患者满意度和护理的连续性[15-19]。
在电传操纵飞机上,飞行控制是根据复杂的控制法则和逻辑实施的。通常在传统飞机上进行的操纵品质认证测试,以证明符合 CS 25 SUBPART B – FLIGHT,但这些测试不足以涵盖在服务中可能遇到的所有可预见情况下的飞行控制法则行为。为了标准化操纵品质测试,EASA 认为,需要在认证文件中明确提出和正式化符合 CS 25.143、25.1301 和 25.1309 中关于飞行控制法则特性的方法,以确保并记录对控制法则、逻辑和特性的充分覆盖和测试。因此,您可能需要请求解释性材料来提高合规性演示的正式化水平。关于失衡特性,数字飞行控制系统不允许飞机处于 CS 25.255(a) 所要求的失衡状态,因此无法证明直接合规性。但是,CS.25.255 的其他要求仍然适用。EASA 可能要求申请人详细说明如何遵守所有适用的 CS 25.255 要求,并提供 DFCS 设计和操作的详细说明,以支持预期的合规性证明。申请人还应详细说明在正常和超速区域进行任何飞行测试的提案。定义配备电子飞行控制系统的飞机的(俯仰、偏航、滚转)设计机动要求,其中控制面的运动与驾驶舱控制装置的运动没有直接关系。这可能基于 CS-25 Am 中采用的相关监管材料。13.存在与带有电子飞行控制/电传操纵系统的飞机相关的认证问题。该主题还涵盖飞行员控制(例如侧杆控制器、方向舵踏板)和操作测试合规性、电子飞行控制系统故障、控制信号完整性、控制面位置感知、控制权限限制、共模故障和错误考虑、飞行控制法则验证和模式通告。可能需要 CRI(包括特殊条件)。