汽车行业正在经历一场革命。电气化、自动驾驶、多样化出行、连通性是彻底改变行业规则的趋势。在所有决定未来汽车革命的决定性主题中,Silicon Mobility 致力于支持电动和混合动力汽车的快速出现。Silicon Mobility 是更清洁、更安全、更智能的出行技术领导者。该公司为汽车行业设计、开发和销售灵活、实时、安全和开放的半导体解决方案,用于提高能源效率和减少污染物排放,同时确保乘客安全。该公司正在其主要研发中心开设 DFT 架构师经理职位,该中心位于法国里维埃拉的索菲亚-安提波利斯科技园。你是一位才华横溢、充满激情的片上系统 DFT 专家?你想支持颠覆性产品的开发,加速汽车动力系统电气化?在 Silicon Mobility,我们希望激发员工的潜力。你准备好迎接挑战了吗?联系我们:将您的简历和求职信发送至 hr@silicon-mobility.com。
摘要。在这项研究中,使用了密度功能理论(DFT)和时间依赖性密度功能理论(TD-DFT)方法,研究了硫代齐奈德富勒烯C 60纳米复合物的物理和化学特性。最重要的目标是增加C 60偶极力矩作为一种新型药物输送系统,以携带硫代齐奈德。在基态下使用了几个描述符,包括基于HOMO和LUMO轨道能,硬度,柔软度,化学势和Mulliken电荷的电化学性质。该纳米复合物的偶极矩约为2.61d,这表明其在极溶剂中中度溶解度。使用CAMB3LYP方法获得的UV-VIS频谱表明,在复合物形成后,吸收光谱的蓝移度约为= 24 nm。基于激发态的计算和第一个模式中的孔 - 电子理论,在复合物的不同吸收波长处观察到光诱导的电子传递(PET)现象。使用电子传递的Marcus理论,计算电子转移的激活的自由能和所有宠物的电子转移的自由能。
k 点的数量 = 13 购物车坐标。单位为 2pi/alat K-POINTS k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1250000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.5000000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.2500000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0625000 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1250000 k( 9) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0625000 k( 10) = ( -0.7500000 0.7500000 -0.2500000),wk = 0.2500000 k( 11) = ( -0.5000000 0.5000000 0.0000000),wk = 0.1250000 k( 12) = ( 0.0000000 0.0000000 -1.0000000),wk = 0.0312500 k( 13) = ( 0.0000000 1.0000000 -0.5000000),wk = 0.0625000
替硝唑(TNZ,化学结构式见图1)是第二代硝基咪唑类抗生素1,具有抗菌、抗炎作用,被广泛应用于防治阿米巴原虫、阴道滴虫、贾第鞭毛虫病等感染,也在畜牧业和水产养殖业中用作生长促进剂。2~4然而,随着替硝唑的广泛使用和缺乏适当的监管,环境问题进一步加剧,在一些污水处理厂和淡水系统中被检测到了替硝唑的存在。5残留在水中的替硝唑,即使是低浓度的,也会对人类和环境造成长期的潜在威胁。6因此,如何有效地从环境中去除替硝唑是一个亟待解决的问题。相对于替硝唑降解的研究,其他硝基咪唑的降解方法较多,如吸附、生物降解、Fenton法、光催化等。吸附法广泛应用于有机废水的处理,例如moral-Rodriguez的工作表明,罗硝唑(RNZ)可以通过p-p相互作用吸附在颗粒活性炭(GAC)上。7但这种方法并不能真正去除污染物,只是将污染物从水相转移到固相。8生物方法是另一种常用的方法,但一般比较耗时,
摘要 非弹性中子散射 (INS) 是研究固体振动动力学的非常强大的工具。田纳西州橡树岭 SNS 的 VISION 光谱仪在低能量传输下的总通量比其前代产品高出 100 倍,并且具有前所未有的灵敏度。我们将研究 VISION 在 INS 中现在所能达到的极限。从在几分钟内确定可发表质量的 INS 光谱(对于克量范围内的样品),测量毫克范围内样品的信号到直接测定吸附在功能化催化剂上的 2 mmol CO 2 的信号。最后,我们将讨论面临的主要挑战,特别是通过计算机建模和人工智能/机器学习等实现数据分析和解释的自动化方法。 关键词:非弹性中子散射,计算机建模,数据分析 1.简介 VISION 光谱仪位于田纳西州橡树岭散裂中子源 (SNS) 的光束线 16b (BL 16b) 上。VISION 非常独特,因为在大多数情况下,数据分析需要使用 DFT 建模和软件将这些计算机模型转换为可以直接与实验数据进行比较的合成光谱。VISION 是一种间接几何非弹性中子散射光谱仪,在同类仪器中拥有最高的通量和分辨率。主飞行路径距离环境温度下的解耦水慢化剂 16 米 [1]。次要飞行路径为 0.73 米。图 1 所示的次级光谱仪有一个分析器,该分析器由 347 个单晶热解石墨 (PG 002) 晶体(每个晶体面积为 1 cm2)的参数阵列组成,可将散射光束聚焦到 3 个氦管上的一小块区域内。分析器和探测器之间有一个切片铍块,楔块之间有镉片隔开。这些铍滤光片可消除晶体分析器不需要的𝜆/𝑛 反射,起到旁路滤光片的作用。总能量传输范围为 -2 meV 至 1000 meV,并跨越弹性线。对于 5 meV 以上的能量传输,这种仪器的仪器分辨率几乎是能量传输的一小部分 [2]:∆𝜔𝜔 ⁄ ~1.5% (1) 在弹性线上,分辨率为 120 µeV。
拟议的会议是印度理工学院曼迪分校、印度理工学院罗帕尔分校、印度理工学院古瓦哈提分校、孟买 TIFR、加尔各答 TCG CREST 和瑞典乌普萨拉大学的联合活动。实现基于量子现象的先进技术的迫切需求要求彻底了解纳米级和超快时间领域的复杂机制。此外,人工智能和机器学习方法的出现为探索许多新的材料研究途径打开了大门,这是以前无法想象的。我们提议的研讨会将涵盖拓扑、多体相互作用和电子关联、量子信息、机器学习辅助数据挖掘和分子动力学模拟力场的开发、超快磁化动力学等最新主题。这次会议将促进印度国内外各个机构之间的未来合作,从而可能带来互访、联合课程和未来的会议。
概述:我们的表现如何 12 本报告的目的 12 我们的组织结构 12 我们的治理 12 我们的风险 15 绩效概述 15 优先成果 15 DfT 的三个优先成果 15 DfT 的四个战略推动因素 16 企业交付集团总干事的财务概述 17 简介 17 收入和资金 19 支出 20 资本投资:22 资产和负债 26 资产 26 负债 27 未来展望 28 绩效分析 30 经济增长和升级 31 简介 31 工作领域 31 当地交通 31 当地交通基础设施 31 铁路 32 公路 35 改善用户交通 38 简介 38 工作领域 38 铁路 38 公路 41 票价和票务 43 航空和国际旅行 43 减少环境影响 47 简介 47工作 47 实现所有交通方式脱碳 47 应对不断变化的环境 48
拟议的会议是IIT Mandi,IIT Ropar,IIT Guwahati,Tifr Mumbai,TCG Crest,Kolkata和Uppsala University,瑞典的联合努力。基于量子现象实现先进技术的紧迫需求需要对纳米级和超快时域中复杂机制有透彻的理解。此外,人工智能和机器学习方法的出现为探索许多新的材料研究途径打开了大门,这些材料研究的途径是无法做到的。我们提出的研讨会将涵盖艺术主题的状态,例如拓扑,许多身体相互作用和电子相关,量子信息,机器学习辅助数据挖掘和用于分子动力学模拟的力场开发,超快磁化动力学等。本次会议将促进印度内部和外部各个机构之间的未来合作,这可能会导致交易访问,联合课程和未来会议。
图2。原始石墨烯(C 54,第一行)的电子结构(总DOS),并研究了硼氧化的石墨素C 54- n B n(底部三行)。分别显示硼掺杂原子的P状态(如果C 52 B 2,则两个B原子的P状态重叠)。为了清楚起见,所有总DOS图均除以5。费米级(虚线,黑线)设置为0。
表S2:从209个RDKIT描述符中选择功能选择,用于预测聚合物的光节间隙以及XGBoost模型的性能指标,该模型的性能指标训练了具有成对Pearson相关系数(P对)的不同组合的descriptors(P对)的组合,并且与光带差距有关(P GAP)(P GAP)。粗体表示P对和P间隙值的最佳组合。RMSE和MAE以EV测量。