利用生物医学信号作为计算人类情感状态的基础是情感计算(AC)的重要问题。随着对情感信号研究的深入,多模型认知与生理指标的结合、动态完整数据库的建立以及高科技创新产品的加入成为AC的最新趋势。本研究旨在开发一种深度梯度卷积神经网络(DGCNN),用于利用眼动追踪信号进行情感分类。首先应用通用信号处理工具和预处理方法,例如卡尔曼滤波器、汉明窗、短时傅里叶变换(SIFT)和快速傅里叶变换(FTT)。其次,将眼动和追踪信号转换为图像。随后应用基于卷积神经网络的训练结构;实验数据集是通过眼动追踪设备通过分配16名参与者的四种情感刺激(紧张、平静、快乐和悲伤)获得的。最后,使用真阳性率 (TPR) 和假阴性率 (FPR) 指标将 DGCNN 与决策树 (DT)、贝叶斯高斯模型 (BGM) 和 k-最近邻 (KNN) 的性能进行比较。最后还部署了自定义小批量、损失、学习率和梯度定义以用于深度神经网络的训练结构。预测分类矩阵显示了所提出方法对眼动和跟踪信号的有效性,其准确率超过 87.2%。这项研究为通过眼动和跟踪信号寻找更自然的人机交互提供了一种可行的方法,并且在情感产品设计过程中具有潜在的应用价值。
摘要:为了指导果园管理机器人实现果园生产中的某些任务,例如自主导航和精确喷涂,这项研究提出了一个深入学习的网络,称为动态融合细分网络(DFSNET)。该网络包含局部特征聚合(LFA)层和动态融合分割体系结构。LFA层使用位置编码器进行初始转换嵌入,并通过多阶段层次结构逐渐汇总本地模式。Fusion分割模块(FUS-SEG)可以通过学习多插入空间来格式化点标签,而生成的标签可以进一步挖掘点云特征。在实验阶段,在果园田的数据集中证明了DFSNET的显着分割结果,其准确率为89.43%,MIOU率为74.05%。dfsnet优于其他语义细分网络,例如PointNet,PointNet ++,D-PointNet ++,DGCNN和Point-NN,其精度的提高了11.73%,3.76%,3.76%,2.36%,2.36%和2.74%,并分别为2.74%,并改善了这些网络,并改善了这些网络,并分别为28.3%,28.3%,9.9%,9.9%,9.9%,9.9%,9.9%,9.9%,占28.3%,占28.3%,占28.3%,分别为9.19%,分别为9.9%,均为28.3%,分别为9.3%,分别为2.19%。在全尺度数据集(简单尺度数据集 +复杂尺度数据集)上,分别为9.89和24.69%。提议的DFSNET可以从果园场景点云中捕获更多信息,并提供更准确的点云分割结果,这对果园的管理有益。
[dbscan] Ester等。:“一种基于密度的算法,用于在具有噪声的大空间数据库中发现簇”。:KDD,1996年。[DGCNN] Wang等。:“用于在点云上学习的动态图CNN”。in :( tog),2019年。[Kabsch] W. Kabsch:“解决两组向量的最佳旋转解决方案”。in:晶体物理学,衍射,理论和一般晶体学,1976年。[Hregnet] Lu等。:“ Hregnet:用于大规模室外激光点云注册的分层网络”。in:(iccv),2021。[Randla-net] Hu等。:“ randla-net:大规模点云的有效语义分割”。in:(cvpr),2020。[Stereokitti] Menze等。:“自动驾驶汽车的对象场景流”。in:(cvpr),2015年。[Lidarkitti] Geiger等。:“我们准备好进行自动驾驶了吗?Kitti Vision基准套件”。in:(cvpr),2012年。[Semkitti] Behley等。:“ Semantickitti:用于LIDAR序列的语义场景的数据集”。in:(ICCV),2019年。[FT3DS] Mayer等。:“一个大型数据集来训练卷积网络以差异,光流和场景流量估计”。in:(cvpr),2016年。[pointpwc-net] Wu等。:“ PointPWC-NET:(自我监督场景流估计)点云上的成本量”。在:(ECCV),2020年。[FlowStep3d] Kittenplon等。:“ FlowStep3d:自我监督场景流估计的模型展开”。in:(cvpr),2021。[RMS-FLOWNET] Battrawy等。:“ RMS-FLOWNET:大规模点云的高效且稳健的多尺度场景流程估计”。in:(icra),2022。[WM3D] Wang等。:“对于3D场景流网络重要的东西”。in:(ECCV),2022。[Bi-Pointflownet] W. Cheng和J. Hwan Ko:“基于点云的场景流估计的双向学习”。in:(ECCV),2022。[Chodosh等人]Chodosh等。:“重新评估激光雷达场景以进行自动驾驶”。in:arxiv,2023。[WSLR] Gojcic等人。:“严格3D场景流的弱监督学习”。in:(cvpr),2021。[ERC] Dong等。 :“利用震子场景流量估计的刚性约束”。 in:(cvpr),2022。[ERC] Dong等。:“利用震子场景流量估计的刚性约束”。in:(cvpr),2022。