Change log 5 Introduction 6 Licensing 6 Special notices 7 Enabling full disk access 7 Activating system extensions 8 VPN 8 Web Filter and Application Firewall 9 Proxy mode extension 10 Enabling notifications 10 DHCP over IPsec VPN not supported 10 IKEv2 not supported 10 Running multiple FortiClient instances 11 IPsec VPN support limitation 11 Installation information 12 Firmware images and tools 12 Upgrading from previous FortiClient versions 12 Downgrading to previous versions 12 Uninstalling FortiClient 13 Firmware image checksums 13 Product integration and support 14 Language support 15 Resolved issues 16 GUI 16 Remote Access - SSL VPN 16 Known issues 17 New known issues 17 Existing known issues 17 Configuration 17 Dashboard 17 Endpoint control 18 Remote Access 18 Remote Access - IPsec VPN 18 Remote Access - SSL VPN 19 Vulnerability Scan 19 Web Filter and plugin 19零信托标签20应用程序防火墙20头像和社交登录信息20许可证20部署和安装程序20安装和升级20
ADC:模数转换器 AHRS:姿态航向参考系统 CAN(总线):控制器局域网 DHCP:动态主机配置协议 DVL:多普勒速度计 EKF:扩展卡尔曼滤波器 EEPROM:电可擦可编程只读存储器 FIR:有限脉冲响应(滤波器) FTP:文件传输协议 FS:全量程 FOG:光纤陀螺仪 GNSS:全球导航卫星系统 GPS:全球定位系统 IIR:无限脉冲响应(滤波器) IMU:惯性测量单元 INS:惯性导航系统 IP:互联网协议 LBL:长基线 MAC(地址):媒体访问控制 MEMS:微机电系统 NED:东北向下(坐标框架) NA:不适用 NMEA(NMEA 0183):国家海洋电子协会(标准化通信协议) PPS:每秒脉冲(信号) RAM:随机存取存储器 RMA:返回商品授权 RMS:均方根 RTCM:海事无线电技术委员会(协议) RTK:实时运动学 SI:国际单位制 TBD:待定义 TCP:传输控制协议 UDP:用户数据报协议 UTC:协调世界时 USBL:超短基线 VRE:振动校正误差 WGS84:世界大地测量系统 1984 WMM:世界磁模型
• Fully integrated and green/RoHS module includes all required clocks, serial peripheral interface (SPI) flash, and passives • Integrated Wi-Fi ® and internet protocols • 802.11a/b/g/n: 2.4GHz and 5GHz • FCC, IC/ISED, ETSI/CE, and MIC certified • FIPS 140-2 Level 1 validated IC inside • Rich set of IoT security features helps developers protect data • Low-power modes for battery powered application • Coexistence with 2.4GHz radios • Industrial temperature: –40°C to +85°C • Wi-Fi network processor subsystem : – Wi-Fi core: • 802.11 a/b/g/n 2.4GHz and 5GHz • Modes: – Access Point (AP) – Station (STA) – Wi-Fi Direct ® (only supported on 2.4GHz) • Security: – WEP – WPA ™ / WPA2 ™ PSK – WPA2 Enterprise – WPA3 ™ Personal – WPA3 ™ Enterprise – Internet and application protocols: • HTTPs server, mDNS, DNS-SD, DHCP • IPv4 and IPv6 TCP/IP stack • 16 BSD sockets (fully secured TLS v1.2 and SSL 3.0) – Built-in power management子系统:•可配置的低功率配置文件(始终打开,间歇性连接,标签)•高级低功率模式•集成的DC/DC调节器•应用程序吞吐量 - UDP:16MBPS:16MBPS - TCP:13MBPS•13MBPS•多层安全性,
现有的大型数据集已被整理用于探索不同的研究问题,不同研究中受试者数量和成像点数量各不相同。例如,如果研究问题是关于寿命和衰老,要考虑的数据集将包括英国生物库(Sudlow 等人,2015 年)和 CamCAN(Taylor 等人,2017 年)。同样,如果考虑早期发展,可用的数据集包括发展中的 HCP(dHCP)(Hughes 等人,2017 年)和青少年大脑认知发展(ABCD)(Marek 等人,2019 年);对于年轻人的研究,可以考虑 HCP 年轻人(Van Essen 等人,2013 年)。还存在探索特定临床群体的数据集,例如阿尔茨海默病(ADNI(Jack 等人,2008 年))、精神分裂症和躁郁症(CANDI(Frazier 等人,2008 年))。这些数据集允许探索传统小规模研究(例如 N<100)无法实现的问题,因为这些研究无法充分代表目标人群中的差异。大规模研究还能够表征患者样本中的潜在亚型 - 例如,(Young 等人,2018 年)使用来自 ADNI 的数据证明了阿尔茨海默病相关萎缩模式的异质性和亚型。
摘要。皮质表面重建在对围产期期间大脑快速发育进行建模方面起着基本作用。在这项工作中,我们提出了有条件的时间注意网络(COTAN),这是一个快速的端到端末端框架,用于新生儿皮质表面重建。Cotan可预测新生儿脑磁共振图像(MRI)的多分辨率固定速度场(SVF)。Cotan不是整合多个SVF,而是引入了注意机制,以通过在每个集成步骤中计算所有SVF的加权总和来学习有条件的时变速度场(CTVF)。每个SVF的重要性(通过学习的注意图估算)的重要性是基于新生儿的年龄,并且随着整合的时间步骤而变化。提出的CTVF定义了差异表面变形,该变形可有效地减少网格自我交流误差。仅需要0.21秒即可为每个脑半球变形至皮质白色垫料和毛皮表面的初始模板网格。cotan在开发的人类连接项目(DHCP)数据集上得到了验证,其中877 3D脑MR图像是从早产和术语出生的新生儿获取的。与最先进的基线相比,科坦仅以0.12±0.03mm的几何误差和0.07±0.03%的自我相交面部实现了优势。我们注意地图的可视化说明了科坦确实在没有中间监督的情况下自动学习了粗到细的表面变形。
提供准确的人脑连接组的一个重要步骤是对 3D 磁共振成像 (MRI) 扫描进行稳健分割,这在对围产期数据进行分割时尤其具有挑战性。在本文中,我们提出了一种基于深度学习的自动化流程,用于从新生儿脑 MRI 中准确分割组织,并通过引入年龄预测途径对其进行了扩展。使用深度学习技术开发脑数据的一个主要限制是需要收集大量的地面真实标签。因此,我们还研究了两种实用方法,这些方法可以帮助缓解标签稀缺问题,而不会损失分割性能。首先,我们检查了在 3D 训练图像上分配有限预算的带注释 2D 切片的不同策略的效率。在第二种方法中,我们比较了预训练模型与一小部分早产儿的不同微调策略的分割性能。我们的结果表明,在大量脑部扫描上分配标签可以提高分割性能。我们还表明,即使是部分微调,其性能也可以优于从头开始训练的模型,这凸显了在标签稀缺条件下迁移学习策略的相关性。我们以大型、公开可用的 T1 和 T2 加权 MRI 扫描(n = 709,扫描时的年龄范围:26-45 周)为例,这些扫描是从发展中人类连接组计划 (dHCP) 队列中回顾性获得的。
自由职业云工程师 2022 – 至今 远程合同工作 特拉维夫,然后是英国牛津 • 为现有项目提供远程支持,专注于云和基础设施优化 • 学习并获得 AWS DevOps 和 Kubernetes 管理员认证 • 在 ozon.ru 赞助的 2 个月课程中学习了 Enterprise Go 开发,获得了职位 • 开发了个人开源项目,例如 GoDaddy DNS 的 Terraform 模块 • 实现了几个小型基于云的应用程序,例如体育赛事仪表板 基础设施团队负责人 2021 – 2022 Maxidom and Castorama LLC 俄罗斯圣彼得堡和莫斯科 • 在重大合并期间领导了一个由 3-6 名工程师组成的团队,将企业 LAN 规模扩大了一倍 • 使用自动化工具以最少的中断协调了 15 家商店的迁移 • 使用 Ruby 实现 AD 和邮件帐户配置和生命周期管理 • 从 Office365 迁移了 600 个邮件和 AD 帐户,每年在许可证上节省 5 万美元 数据中心架构师俄罗斯圣彼得堡 • 设计并实施了 VMware vSphere 数据中心的高可用性对,为 5000 多名企业用户提供服务 • 使用 Ansible 自动化基础架构和服务配置 • 从旧 DC 迁移 AD、邮件、Oracle 和 ERP,监督数据迁移和无缝切换 • 使用 Prometheus 指标、Grafana 仪表板和 PushOver 通知实施监控 高级基础设施工程师 2015 – 2019 Maxidom LLC 俄罗斯圣彼得堡 • 使用 Ansible 自动化 LAN 配置和维护的所有方面(交换机、DHCP、DNS、AD) • 为分支 LAN(Juniper)、WLAN(Ruckus)、服务器(Proliant 上的 ESXi)和服务制定蓝图 • 为 OLTP/DSS 和数据复制部署了多个 Oracle DB,实施了 ETL 任务和 DB 克隆 • 使用 FortiMail 反垃圾邮件中继将公司电子邮件迁移到 CommuniGate 服务器(1000 个用户)
由分布式和相互连接的结构组成,这些结构通过皮质皮质连接和皮质增生环路相互作用,感觉运动(SM)网络在围产期内经历快速成熟,因此特别容易容易体现早产。然而,早产对新兴SM连接的发展和完整性的影响及其与后来的运动和全球障碍的关系仍然很少了解。在这项研究中,我们旨在探索在期限年龄(TEA)时SM白质(WM)连接的早期微观结构成熟的程度受早产调节,并且与18个月校正年龄的神经发育结果有关。我们分析了从发展中的人类连接项目(DHCP)数据库中的118个扩散MRI数据集:59个早产(PT)低风险婴儿在TEA附近扫描的茶和对照组的成年(MRI和性别年龄)配对的对照组(FT)新生儿。我们使用概率拖拉机划定了主要的SM皮质(S1,M1和中心区域)和皮层下结构之间的WM连接,并使用扩散张量成像(DTI)和Neurite方向分散分散和密度成像(NODDI)模型评估了它们的微观结构。为了超越特定的单变量分析,我们根据每个PT婴儿相对于FT组的多参数Mahalanobis距离计算了与早产相关的成熟距离。我们的结果证实了PT和FT婴儿之间SM段的微观结构差异,其影响随着出生时胎龄较低而增加。成熟距离分析强调,早产性对较高距离的SM段具有差异作用,因此对(i)皮质皮质的影响比皮质 - 皮层的连接有影响。 (ii)涉及S1的投影比M1和中心区域; (iii)最胸部皮质皮质块,涉及凸出核。茶时的这些不同的变化表明脆弱性遵循特定的模式与已建立的
NATIONAL INSTITUTE OF TECHNOLOGY RAIPUR DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION Semester: 6 Code: ET20611 Subject: Data Communication and Networking Credits: 4 Total Theory Periods: 30 Total Tutorial Periods: 10 UNIT I INTRODUCTION TO INTERNET: Network edge, end systems, clients, servers, connectionless and connection oriented services, Network code, Access networks, ISPs and internet backbone, Delay and loss in packet switched network.分层体系结构:协议服务和分层,OSI参考模型,TCP/IP的概述,Berkeley API,C中的介绍性套接字编程,应用程序层协议和TCP/IP UTILITION。单元II数据链接层:点对点协议和服务模型,ARQ协议和可靠的数据传输服务,停止和等待,Go-back-N,选择性重复,滑动窗口流量控制,同步服务的时机恢复,TCP可靠的流服务和流量控制。数据链接控件:框架,HDLC数据链接控制,使用数据包多路复用器共享链接共享。单元III中型访问控制:随机访问,Aloha,插槽Aloha,CSMA,CSMA CD,调度方法的调度方法,用于中等访问控制,预订系统,投票,通过标记戒指,比较,MAC的延迟性能:频道的性能:频道的性能与爆发的交通,投票和随机访问,随机访问,随机访问,随机访问和CSMACD。局部网络:LAN协议,以太网,令牌环,无线LAN和IEEE 802.11标准。教科书:1。通讯网络,第2版,莱昂·加西亚(Leon-Garcia),i widjaja,麦格劳山(McGraw Hill)教育印度。2。计算机网络:上自上而下的方法,第5版,J F Kurose,K W Ross,Pearson Education。3。2。单元IV数据包交换网络:数据包网络拓扑,数据报和虚拟电路,数据包网络中的路由,最短路由路由,ATM网络,数据包级别的流量管理,流量管理处的流量管理,流量级别,流量管理级别的流量管理。单元V TCP/IP:体系结构和协议,IP数据包,地址,子网,IP路由,CIDR,地址分辨率,反向地址分辨率,碎片和重新组装,ICMP,IPV6,UDP,UDP,传输控制协议,Internet路由协议,Multicast路由协议,DHCP,NAT和移动IP。Behrouz A. Forouzan,“数据通信和网络”,Tata McGraw-Hill,2004年。参考书:1。数据网络,2 ED,D P Bertsekas,R G Gallagar,Prentice Hall。计算机和通信网络的分析,F Gebali,Springer,2008年。
_____ Personal Information _________________________________________________ Family name, First name: Hüppi Petra Susan Date and Place of Birth: 26 October 1960;瑞士卢塞恩;瑞士ORCID ID:0000-0002-7383-6648 https://orcid.org/000000-0002-7383-6648 Google Scholar ID:https://scholar.google.com/citations? https://www.unige.ch/medecine/petri/fr/groupes-de- recherche/184huppi/membres-du-groupe/petra-huppi/ HUG URL: https://www.hug-ge.ch/developpement-croissance/centre-du-developpement-enfant UZH URL: https://www.uzh.ch/de/explore/management/unirat.html usz url:https://wwwwwww.usz.ch/team/petra-hueppi/ childlab url: ________________________________________________________________ 2003 Full Professor , University of Geneva, Switzerland 1998 Privat-docent, University of Geneva, Faculty of Medicine 1993 Boards of Peadiatrics/Neonatology (Switzerland) 1987 US Medical graduation for Foreign Medical Graduates 1986 M.D., Medicine, University of Berne, Switzerland _____ Current positions ____________________________________________________________________________________________________________________________________________________________]瑞士日内瓦大学医院儿童和青少年,2003年 - 日内瓦大学儿科教授,1998年 - 访问科学家美国波士顿哈佛医学院儿童医院神经病学。 _____ Employment history __________________________________________________________________ 2019 -2023 Vice Dean of the Faculty of Medicine, University of Geneva, Switzerland 1998 -2003 Director, Child Development Unit, Dept.美国波士顿哈佛医学院儿童医院神经病学。_____ Employment history __________________________________________________________________ 2019 -2023 Vice Dean of the Faculty of Medicine, University of Geneva, Switzerland 1998 -2003 Director, Child Development Unit, Dept.儿童医院儿童医院,日内瓦大学1996- 1997年,新生儿学/部门联合计划儿童健康研究中心的Janeway学者Charles。美国波士顿儿童医院哈佛医学院神经病学。美国波士顿儿童医院哈佛医学院神经病学。1994-1996新生儿学(雷诺兹富裕的史密斯奖学金),新生儿学联合计划,美国波士顿,美国波士顿,1994年,1994年,1994年至1994年,儿童医院,1990年,1990年贝尔恩(Berne)1990年新生儿/行为研究研究员,儿童医院,儿童医院,纽约市,NENON,boston和2个月,美国,1988年9月1日。 Department of Neonatology, University Hospital for Obstetrics and Gynecology, Bern, Switzerland 1987-1988 Resident, Department for Anaesthesiology, University Hospital, Bern, Switzerland _____ Selected Institutional Responsibilities ___________________________________________________ 2018- Member of the Scientific Advisory Board to NeuroSpin CEA Saclay, Paris 2015- Member of the Scientific Advisory Board of the Developing Human Connectome dHCP, London (PI D. Edwards) 2016-2022 ESPR Vice-President – European Society for Pediatric Research 2012-2020 National Research Council Member Swiss National Science Foundation (SNSF) 2012-2014 Agence National de Recherche (ANR) France Official member of Research Council _____ National and International Academic Institutional responsibilities ______________________________ National 2019- Elected member of the Board of Trustees of the University of Zurich (UZH) ( https://www.uzh.ch/de/explore/management/unirat.html ) 2019- Board of trustees of the University Hospital of Zurich – Representative UZH ( https://www.usz.ch/team/petra-hueppi/) International 2024- Vice-President Elect, International Society for Magnetic Resonance in Medicine (ISMRM)https://www.ismrm.org/members-only/committee-directory/#execneture
