将相干光学跃迁与长寿命自旋量子比特耦合的固态量子发射器对于量子网络至关重要。我们在此报告了金刚石纳米结构中单个锡空位 (SnV) 中心的自旋和光学特性。通过低温磁光和自旋光谱,我们验证了 SnV 的反演对称电子结构,识别了自旋守恒和自旋翻转跃迁,表征了跃迁线宽,测量了电子自旋寿命,并评估了自旋失相时间。我们发现,即使在纳米制造结构中,光学跃迁也与辐射寿命极限一致。自旋寿命受声子限制,指数温度缩放导致 T 1 > 10 毫秒,相干时间 T 2 在冷却至 2.9 K 时达到核自旋浴极限。这些自旋特性超过了其他反演对称色心的自旋特性,而这些色心的类似值需要毫开尔文温度。 SnV 结合了相干光学跃迁和长自旋相干性,无需稀释制冷,是可行且可扩展的量子网络应用的有希望的候选者。
过去五年来,全球公用事业规模电池储能系统 (BESS) 的装机容量大幅增加。虽然最近部分 BESS 发生的火灾引起了媒体的广泛关注,但随着早期故障事故中吸取的教训被纳入新的设计和最佳实践中,事故总体发生率已大幅下降。2018 年至 2023 年间,全球电网规模 BESS 故障率下降了 97%。
将相干光学跃迁与长寿命自旋量子比特耦合的固态量子发射器对于量子网络至关重要。我们在此报告了金刚石纳米结构中单个锡空位 (SnV) 中心的自旋和光学特性。通过低温磁光和自旋光谱,我们验证了 SnV 的反演对称电子结构,识别了自旋守恒和自旋翻转跃迁,表征了跃迁线宽,测量了电子自旋寿命,并评估了自旋失相时间。我们发现,即使在纳米制造结构中,光学跃迁也与辐射寿命极限一致。自旋寿命受声子限制,指数温度缩放导致 T 1 > 10 毫秒,相干时间 T 2 在冷却至 2.9 K 时达到核自旋浴极限。这些自旋特性超过了其他反演对称色心的自旋特性,而这些色心的类似值需要毫开尔文温度。 SnV 结合了相干光学跃迁和长自旋相干性,无需稀释制冷,是可行且可扩展的量子网络应用的有希望的候选者。
图:https://www.tf.uni-kiel.de/matwis/amat/mat/semi_en/kap_2/kap_2/backbone/r2_1_5.html M. Xu,D。Wang,K。Fu,D。牛津开放材料科学,第1卷。2,不。1,p。 itac004,2022。
为了最大程度地减少或消除沟槽,最好有利于蚀刻过程的化学成分。因此,我们决定继续使用ICP-RIE进行O 2等离子体蚀刻,这是因为在表面形态和各向异性蚀刻方面具有令人鼓舞的结果,因此我们已经研究了血浆参数的影响ICP和偏置功率,尤其是使用两种类型的口罩:铝和硅二氧化物(Sio-dioxide)(Sio 2)。3- O 2在Sentech Si500-Drie设备上进行了用铝面膜钻石蚀刻的等离子体蚀刻。测试样品是(100)方向的单晶CVD钻石底物和元素六的3 x 3 mm 2尺寸。第一步涉及溶剂和酸的化学清洁,以去除可能影响蚀刻和产生粗糙度的污染物。然后将钻石底物涂在光线器上,并用激光光刻降低,以定义掩模图案。然后通过热蒸发沉积700 nm厚的铝面膜。金属薄膜,例如铝,由于其在钻石上的良好粘附性[24]及其良好的蚀刻选择性[25],因此将其用作单晶钻石蚀刻的硬面膜材料。此外,由于血浆中的寿命不足,尤其是在氧气中,因此与光致剂相比,金属面膜仍然是更好的选择。3.1 o 2等离子蚀刻的p icp = 500W和p偏见= 5W我们研究的第一个蚀刻条件是:p icp = 500 w,p sial = 5 w,压力= 5吨,气体流量= 25 sccm,温度= 18°C。每个蚀刻步骤都限制为30
电载体及其高热分率[8]和机械功能使石墨烯高度用途。结合钻石和石墨烯的显着性在于具有最好的两者的可能性:钻石的绝缘和热散热性能以及墨料的出色电气特性。钻石表现出165 MeV的高光音子能量。[9]此属性对于钻石上的石墨烯设备可能至关重要,因为石墨烯层中的载流子迁移率通常受到源自底物的光学声子散射的限制。高光学声子能量意味着在RT处很少有光学声子,导致低散射速率。与常规的SIO 2 /Si和SIC相比,DIAMOND作为底物的其他好处包括其具有较低陷阱密度的化学惰性表面。作为钻石上石墨烯设备的底物,由于其可伸缩性可能性和较低的缺陷密度,化学蒸气沉积(CVD)钻石优于高压高温(HPHT)。[10]石墨烯和钻石的非凡特性引起了人们对将这些材料集成到电子和量子应用中的兴趣。[11]
难以区分的混淆(IO)已经取得了显着的理论进步,但是由于其高复杂性和效率低下,它仍然不切实际。最近的IO方案中的一种常见瓶颈是依赖自动化技术从功能加密(Fe)到IO中的依赖,该技术需要递归地调用每个输入位的Fe加密算法,这是为实用IO方案的重要障碍。在这项工作中,我们提出了钻石IO,这是一种新的基于晶格的IO结构,它用轻量级的矩阵操作代替了昂贵的递归加密过程。我们的构造在学习中被证明是安全的(LWE)和回避的LWE假设,以及我们在伪甲骨文模型中的新假设(All-Product LWE)。通过利用Agrawal等人引入的伪随机功能的Fe方案。(eprint'24)在非黑色盒子中,我们消除了对先前的Fe-io bootstrapping技术的依赖,从而显着降低了复杂性。剩下的挑战是将我们的新假设减少到LWE等标准的标准,进一步促进了实用和合理的IO构造的目标。
hzμm-3(带有自旋型耦合系数,代表主要的系统不确定性)。我们在具有低应变梯度的单晶散装钻石中使用应变敏感的自旋态干涉仪(N- V)颜色中心。这种量子干涉量学技术对磁场对电子和核自旋浴的不均匀性产生了不敏感性,从而实现了长时间的N- V – Angelement Electemple-Electemple-Electemple-Electement Electem-Election旋转时间和增强的应变敏感性,并增强了该技术的潜在应用,并拓宽了相同的技术的潜在应用。我们在共聚焦扫描激光显微镜上首先证明了应变敏感的测量方案,从而提供了敏感性的定量测量以及三维应变图;第二位于宽阔的成像量子钻石显微镜上。我们的应变 - 显微镜技术可以快速,敏感的钻石材料工程和纳米化表征;以及基于钻石的菌株感测所应用的,例如在钻石砧细胞或嵌入式钻石应力传感器中,或内部通过粒子诱导的核后坐力引起的晶体损伤。
量子信息技术提供了通过在量子计算机之间分布纠缠的安全渠道来实现未经原理的计算资源的潜力。Diamond作为可光学访问的旋转Qubt的主机,是一个领先的平台,可以实现扩展此类量子链接所需的量子存储节点。光子晶体(PHC)腔增强了光质的相互作用,对于分别用于存储和传达量子信息的旋转和光子之间的有效界面至关重要。在这里,我们演示了用薄膜钻石制造的一维PHC腔,分别具有1.8×10 5和1.6×10 5的质量因子(Q),是任何材料中实现的可见PHC腔最高QS。重要的是,基于常规的平面制造技术,我们的制造过程是简单且高收益的,与先前的复杂底切工艺相反。我们还展示了具有高光子提取效率的纤维耦合的1D PHC腔,以及单个SIV中心和在4 K时的此类腔之间的光学耦合,达到18。purcell系数。所证明的光子平台可能从根本上提高量子节点的性能和可扩展性,并加快相关技术的开发。