摘要:糖尿病是关键疾病之一,许多人患有这种疾病。年龄,肥胖,缺乏运动,遗传性糖尿病,生活方式,不良饮食,高血压等。会引起糖尿病。患有糖尿病的人患有诸如心脏病,肾脏疾病,中风,眼睛问题,神经损伤等疾病的风险很高。目前在医院的实践是通过各种测试收集所需的糖尿病诊断信息,并根据诊断提供适当的治疗方法。大数据分析在医疗保健行业中起着重要作用。医疗保健行业有大量数据库。使用大数据分析,可以研究庞大的数据集并找到隐藏的信息,隐藏的模式,从数据中发现知识并相应地预测结果。在现有方法中,分类和预测准确性不是那么高。在本文中,我们提出了一个糖尿病预测模型,以更好地分类糖尿病,其中包括糖尿病的少数外部因素以及葡萄糖,BMI,年龄,胰岛素等常规因素。与现有数据集相比,新数据集可提高分类精度。进一步提出了旨在提高分类准确性的糖尿病预测的管道模型。I.引言医疗部门具有大量数据库。这样的数据库可能包含结构化的,半结构化或非结构化数据。考虑到当前情况,印度等主体国家(DM)已成为一种非常严重的疾病。现有大数据分析是一个过程,该过程分析了巨大的数据集并揭示隐藏的信息,隐藏的模式以从给定数据中发现知识。糖尿病性梅利氏菌(DM)被归类为非传染性疾病(NCB),许多人患有疾病。根据2017年统计数据,约有4.25亿人患有糖尿病。由于糖尿病,每年约有2-5万患者的生命。据说到2045年,这将增加到6.29亿。[1]糖尿病(DM)被分类为称为胰岛素依赖性糖尿病(IDDM)的Astype-1。人体无法产生足够的胰岛素,这种DM背后的原因,因此需要向患者注入胰岛素。类型-2也称为非胰岛素依赖性糖尿病(NIDDM)。当身体细胞无法正确使用胰岛素时,可以看到这种糖尿病的类型。-3型妊娠糖尿病,孕妇的血糖水平升高,未发现糖尿病的糖尿病会导致这种类型的糖尿病。dm具有与之相关的长期并发症。此外,糖尿病患者存在各种健康问题的高风险。一种称为预测分析的技术,结合了各种机器学习算法,数据挖掘技术和统计方法,该方法使用当前和过去的数据来找到知识并预测未来的事件。通过对医疗保健数据进行预测分析,可以做出重大决策并可以做出预测。可以使用机器学习和回归技术进行预测分析。预测分析旨在以最佳的准确性诊断疾病,增强患者护理,优化资源并改善临床结果。[1]机器学习被认为是最重要的人工智能功能之一,支持计算机系统的开发,具有从过去的经验中获取知识而无需每种情况进行编程的能力。机器学习被认为是当今情况的迫切需要,以通过支持最小缺陷来消除人类的努力。
表5。优化的决策树的性能和验证精度............. 28表6。Classification report of decision tree......................................................29 Table 7.决策树的混乱矩阵................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 29表8。优化的模型参数值和验证精度......................................................................................................................................................................................................................................................... 31
在全球范围内,糖尿病,心脏病和乳腺癌是死亡的主要原因。糖尿病会影响血糖水平,乳腺癌涉及乳房组织中的肿瘤,心脏病包括心脏节律异常和冠状动脉疾病等问题。在印度,糖尿病每年杀死一百万以上的人,心脏病占死亡率的很大一部分。AI模型今天通常专注于一次诊断一次疾病。 我们建议的方法将糖尿病,乳腺癌和心脏病预后整合到一个用户友好的界面中。 该系统试图通过使用机器学习方法(包括K-Nearest Neighbors(KNN),支持向量机(SVM)和Logistic回归)的机器学习方法立即为多种疾病提供准确的预测。 这将提高医疗保健效率和诊断能力。AI模型今天通常专注于一次诊断一次疾病。我们建议的方法将糖尿病,乳腺癌和心脏病预后整合到一个用户友好的界面中。该系统试图通过使用机器学习方法(包括K-Nearest Neighbors(KNN),支持向量机(SVM)和Logistic回归)的机器学习方法立即为多种疾病提供准确的预测。这将提高医疗保健效率和诊断能力。
本研究介绍了利用深度学习技术的椰子疾病预测系统的发展,以帮助农民识别和管理椰子树中的疾病。本研究的目的是增强早期疾病检测,提高诊断准确性并提供量身定制的营养建议以促进植物健康。系统集成了在患病椰子植物图像数据集上训练的卷积神经网络(CNN)模型,该模型通过用户友好的Web应用程序访问。农民可以上传树木的图像,然后由CNN模型对其进行处理以预测潜在的疾病。该系统还根据检测到的疾病提供肥料建议。结果表明在现实情况下,疾病鉴定和实际适用性的准确性很高。该系统的实施可以通过实现早期干预,减少农作物损失和优化资源使用来显着使农民受益。总而言之,椰子疾病预测系统展示了先进的机器学习和图像处理技术来转变农业实践的潜力,为椰子种植中的疾病管理提供了一种可及可及的工具。
目的 在警察和犯罪计划的第三大优先事项——打击暴力犯罪和高危害犯罪中,提供关于成瘾和药物滥用的最新进展。详细说明迄今为止的进展以及警察和犯罪专员 (PCC) 为履行计划中的承诺而采取或指示的行动。 解决多塞特郡警察和犯罪小组提供的以下三个关键调查线索:A. 酗酒作为犯罪的诱因通常分为两类:在家中导致家庭暴力,在公共场所导致暴力事件和公众对城镇安全的日益担忧。PCC 认为酗酒的重点领域是什么?他打击这些重点领域的战略方法是什么,包括合作和使用委托权?如何监测有效性?B. 毒品犯罪也涵盖了广泛的领域。从简单的持有到县界和有组织犯罪。就主要威胁而言,PCC 认为每个领域的重点是什么?他解决这些重点领域的战略方法是什么,包括合作和使用委托权?如何监控有效性?C. PCC 在多大程度上认为赌博是犯罪的驱动因素?他解决这些重点领域的战略方法是什么,包括合作和使用委托权?如何监控有效性?
高血压的发病率为每 1,000 人年 38.1 人。在平均四年的随访时间内,高血压的累积发病率为 15.4%。男性、至少 40 岁、有高血压家族史、腹部肥胖以及基线收缩压至少为 130 毫米汞柱或舒张压至少为 80 毫米汞柱的人患高血压的风险更高。在四年的时间内,年龄增长、男性、有高血压家族史、腹部肥胖、低高密度脂蛋白胆固醇和高正常血压与菲律宾人患高血压显著相关。除了年龄、性别和家族史之外,其他因素都是可控的。注意这些可补救的因素可能对降低高血压的患病率以及最终导致心血管疾病及其并发症的发展大有帮助。
oulu应用科学信息技术,网络开发作者:学士学位论文的黑手党标题:医疗保健中的预测分析:利用大数据用于疾病和治疗论文审查员:railiii simanainen和Miisa Tanner和Miisa Tanner的期限以及参与202春季的研究:28医疗保健,特别关注将大数据用于预防疾病和治疗的利用。本文强调了预测分析在医疗保健中的重要作用,同时研究了与在医疗环境中使用大数据相关的潜在收益和挑战。研究材料主要包括有关医疗保健中大数据的现有文献,包括其定义,数据源,收益和挑战。此外,还研究了预测性建模技术,特别是机器学习算法的医疗保健功效。案例研究进行了分析以证明成功的应用。这项研究的结果表明,尽管预测分析为医疗保健提供了重大改进,但仍有各种挑战和关注点需要考虑。未来的发展应着重于改进这些分析方法,并为当前的challenges找到解决方案。关键字:预测分析,机器学习,大数据分析,医疗保健数据
摘要:联合学习是一种在医学领域中用于解决集中化,隐私和机密性等问题的创新方法。它收集了来自几个本地模型的多种数据,并在仅共享结果而不是数据的全球模型中汇总了它。它是一种协作模型培训方法,可实现最佳性能。我们为糖尿病患者预测建立了框架工作,该框架由人工神经网络(ANN),经常性神经网络(RNN)和长期短期内存(LSTM)网络组成。这些模型对分布在多家医院的本地数据进行独立培训,以确保隐私和数据安全。为了改善数据集和地址类不平衡,使用了探索数据分析(EDA)技术和合成少数民族过度采样技术(SMOTE)。EDA有助于理解数据的基本模式和特征,而Smote会生成合成数据点以平衡类。和在全球模型中,我们汇总了所有本地模型权重,并根据其预测精度检查现有本地模型之间的最佳模型。在我们的框架工作中,ANN的精度为89%。因此,考虑这些值进行预测。在训练不同的模型后,我们通过RNN获得了89.00%的精度,ANN的精度为89.99%,精度为89.08%。使用LSTM模型。因此,我们继续使用ANN模型来预测糖尿病。成功提交所有权重后,我们通过全球模型中的最佳性能策略获得了这些精度水平。这种方法可确保绩效最高的模型用于鉴定,从而在协作医疗保健环境中增强糖尿病患者鉴定系统的整体有效性和实际性。