经颅直流电刺激 (tDCS) 是一种很有前途的技术,可用于增强健康和神经紊乱患者的执行功能。然而,关于神经生理变化引起的神经心理和行为变化的证据以及 tDCS 作用机制(以对执行功能很重要的神经元源的激活为证据)仍未得到解决。因此,本研究致力于 (1) 确定五次双侧 tDCS 刺激引起的神经心理、行为和神经生理变化,以及 (2) 确定与负责神经心理和行为变化的执行功能相关的假定神经元源。在这项单盲研究中,总共 40 名健康参与者被随机分配到主动组 (n = 19) 或假性组 (n = 21),完成了五次 2mA tDCS 刺激,刺激部位为背外侧前额叶皮层 (DLPFC)(F3 作为阳极,F4 作为阴极)。对神经心理学(日常记忆问卷和正念注意力意识量表)和行为评估(n-Back 和 Stroop 测试)进行了重复测量分析,以调查组内和组间差异。前后神经生理学(脑电图)结果表明,双侧 tDCS 刺激激活了负责执行功能的皮质区域,包括更新(工作记忆)和抑制(干扰控制或注意力)。多次双侧 tDCS 刺激导致 DLPFC、扣带回和顶叶皮质中的 theta、alpha 和 beta 波段活动显著增加。这项研究提供了证据,表明 tDCS 可用于提高健全人的执行功能。
在某些类型的冥想中,例如正念和禅宗,呼吸是吸引人的重点,而在过度,短期的厌氧运动中,肌肉成为注意力的焦点。因此,在两种努力中,人们的注意力都集中在身体的某些效果上。冥想和锻炼通常为人类提供精神上的茶点。我们假设同一大脑区域都被人类的两种努力激活。为了审查这一假设,我们让参与者参与了3个任务:冥想,表现和控制任务。在每项任务后,参与者进行了2张检验以吸引他们的思想,而使用近红外光谱(NIR)同时监测血液血红蛋白水平的变化。有17名参与者(20-24岁; 11名男性,6名女性)。我们将快速转换(FFT)分析应用于NIRS波数据,并计算了(1)冥想和对照之间的FFT数据的相关系数,(2)锻炼和控制,以及(3)在Orbitofrontal Cortex(OFC)(OFC)和背侧外侧额叶前frontal frontal frontal corortex(dlpffc)中,dlpffc(dlpffc)在dlpfcc cons in Chare in Chare conthement in Chare in Chrenthement in Chare in Chare in Chincors(dlpffc)。在冥想和运动分析中检测到OFC和DLPFC之间的相关系数有显着差异,信号源分析证实,NIRS波从左右OFC边缘(即,左右窗)向中心传播。我们的结果表明,冥想和锻炼都激活了OFC,这与情绪反应和运动行为有关,从而导致精神茶点。
表明大脑解剖结构可能会影响 NIBS 反应。例如,最近的一项研究表明,左侧 DLPFC 的灰质体积可能与 tDCS 的抗抑郁作用有关。在使用 rTMS 的研究中也发现了类似的结果(Manes 等人,2001 年;Jorge 等人,2008 年)。此外,一项研究调查了健康受试者右前额叶半球皮质厚度与 tDCS 决策表现之间的关联(Filmer 等人,2019 年),目标区域的皮质厚度几乎占受试者认知表现差异的 35%。总之,我们的研究结果进一步证明,NIBS 功效的差异可能是由解剖学个体差异来解释的。
绝对音高 (AP) 是指无需外界参考即可轻松识别乐音的能力,其神经基础尚不清楚。关键问题之一是这一现象背后是感知过程还是认知过程,因为感觉和高级大脑区域都与 AP 有关。为了整合对 AP 的感知和认知观点,我们在此研究了感觉和高级大脑区域对 AP 静息态网络的共同贡献。我们对大量 AP 音乐家 (n = 54) 和非 AP 音乐家 (n = 51) 的源级 EEG 进行了全面的功能网络分析,采用两种分析方法:首先,我们应用基于 ROI 的分析来检查听觉皮层和背外侧前额叶皮层 (DLPFC) 之间的连接,使用几种已建立的功能连接测量方法。这项分析重复了之前的一项研究,该研究报告了 AP 音乐家这两个区域之间的连接增强。其次,我们对相同的功能连接测量进行了基于全脑网络的分析,以更全面地了解可能涉及支持 AP 能力的大规模网络的大脑区域。在我们的样本中,基于 ROI 的分析没有提供听觉皮层和 DLPFC 之间 AP 特定连接增加的证据。全脑分析显示,AP 音乐家的三个网络连接增加,包括额叶、颞叶、皮层下和枕叶区域的节点。在感觉和大脑周边区域的高级区域都发现了网络的共同点。需要进一步研究来证实这些探索性结果。
标题:将神经元群体格式与功能联系起来作者:Douglas A. Ruff 1、Sol K. Markman 1,2、Jason Z. Kim 3、Marlene R. Cohen 1 1 美国伊利诺伊州芝加哥大学神经生物学系 2 美国马萨诸塞州麻省理工学院脑与认知科学系 3 美国纽约州伊萨卡康奈尔大学物理系摘要 具有复杂行为的动物往往比简单生物具有更多不同的大脑区域,而执行多项任务的人工网络往往会自组织成模块 (1-3)。这表明不同的大脑区域发挥着不同的功能来支持复杂的行为。然而,一个常见的观察是,动物感觉、知道或做的任何事情基本上都可以从任何大脑区域的神经活动中解码 (4-6)。如果万物无处不在,为什么还要有不同的区域?这里我们表明,大脑区域的功能更多地与不同类型的信息在神经表征中如何组合(格式化)有关,而不仅仅与这些信息是否存在有关。我们比较了两个大脑区域:中颞区(MT),对视觉运动感知很重要(7,8),以及背外侧前额叶皮质(dlPFC),与决策和奖励预期有关(9,10))。当猴子根据运动和奖励信息的组合做出决策时,这两种类型的信息都会出现在两个大脑区域中。然而,它们的格式不同:在 MT 中,它们是单独编码的,而在 dlPFC 中,它们以反映猴子决策的方式联合表示。一个反映了 MT 和 dlPFC 中信息格式的循环神经网络(RNN)模型预测,操纵这些区域的活动将对决策产生不同的影响。与模型预测一致,电刺激 MT 偏向于视觉运动刺激和受刺激单元的首选方向之间的中间位置的选择(11),而刺激 dlPFC 则产生“赢家通吃”决策,有时反映视觉运动刺激,有时反映受刺激单元的偏好,但绝不会介于两者之间。这些结果与模块化结构通过灵活地重新格式化信息来实现行为目标,从而实现复杂行为的诱人可能性相一致。神经群体反应中不同信息源的格式化在单个神经元中并不明显。长期以来,人们都知道单个神经元的反应反映了多种感觉、认知和/或运动过程。例如,MT 神经元针对视觉运动方向进行调整(7、8、12-14),其反应受到奖励信息(例如与刺激或选择相关的预期奖励)和其他认知过程的调节(通常成倍增加)(15-18)。然而,从单个神经元研究中收集到的已知的调整和调制模式与群体中关于运动方向和奖励信息的多种格式化方式相一致(有时称为表征几何或神经群体几何(19, 20))。之所以出现不同的可能性,是因为即使是相同调整的神经元,也会受到认知过程的异质性调制。通过在对运动方向具有相同调整的神经元中增加一些奖励预期调制量的随机性来模拟这种异质性(图 1A;方法)可以产生运动方向和奖励预期的群体表示,这些表示要么是可分离的(在每个神经元的响应为一维的空间中以不同维度编码;图 1B、C、D),要么是组合的(以相同维度编码;图 1E、F、G)。可分离和组合群体格式之间的差异无法从单个神经元响应中得知,而是来自于奖励预期的调制如何以及是否在整个群体中协调。
图1(1)支撑MD的认知和大脑系统。数学困难来自数学认知的两个核心领域的损害:(i)数字感官和数量操纵,以及(ii)算术事实检索和解决问题。在数量意义上和数量操纵上的损害是由数量的弱符号和非符号表示产生的,以及视觉空间工作记忆能力和认知控制中的“域将军”缺陷。算术事实检索和解决问题的损害是由于操纵数量内部表示的能力以及视觉空间工作记忆,认知控制以及编码和检索的视觉空间工作记忆,认知记忆控制以及关联记忆的缺陷而引起的。这些组件中的任何一个都可能损害数值解决问题技能的效率,并构成MD的风险因素。(2)MD中受损的数字,算术,记忆和认知控制电路的示意图。下颞皮层解码数形式的梭状回(FG),并与顶叶皮层中的顶内沟(IPS)一起,有助于构建数值数量的视觉量表(以绿色框和链接为单位)。分别将IPS和上侧回(SMG)与额眼球(FEF)和背外侧前额叶皮层(DLPFC)分别差异地连接了iPS和上方的回旋(SMG)。这些电路促进了空间中对象的视觉空间工作记忆,并创建了短期表示的层次结构,可以在几秒钟内操纵多个离散数量。锚定在内侧颞皮层(MTL)中的声明记忆系统 - 特别是海马,在长期记忆形成和超越单个问题属性之外的概括中起着重要作用。最后,锚定在前裂(AI),腹外侧前额叶皮层(VLPFC)和DLPFC中的前额叶对照回路(以红色为单位)和促进跨注意力系统的信息,从而促进了目标特定问题的问题和决策>
目的:本研究旨在研究网络游戏障碍 (IGD) 患者在真实游戏中对积极和消极事件的大脑反应,以直接评估 IGD 的神经特征。本研究反映了 IGD 患者在玩游戏时的神经缺陷,为预防和治疗 IGD 提供了直接有效的目标。方法:30 名 IGD 患者和 52 名匹配的娱乐游戏使用 (RGU) 患者在玩在线游戏时接受扫描。使用一般线性模型检测积极和消极事件期间的异常大脑活动。进行了神经特征与成瘾严重程度之间的功能连接 (FC) 和相关性分析,以提供对潜在神经特征的额外支持。结果:与 RGU 受试者相比,IGD 受试者在积极事件期间表现出背外侧前额皮质 (DLPFC) 激活减少,在消极事件期间表现出中额回 (MFG)、中央前回和中央后回激活减少。在 IGD 受试者中,在积极事件期间 DLPFC 和壳核之间的 FC 减少,在消极事件期间 MFG 和杏仁核之间的 FC 减少。神经特征和成瘾严重程度显着相关。结论:与 RGU 游戏玩家相比,IGD 患者在真实游戏中经历积极和消极事件时表现出调节游戏渴望、适应不良的习惯性游戏行为和消极情绪的缺陷。真实游戏中神经基质的这些异常为解释为什么 IGD 患者不受控制地持续参与游戏提供了直接证据,尽管有负面后果。
该研究被设计为随机,双盲,2臂并行组,假对照,试验。患有SCZ和认知障碍的48名参与者(通过一组执行功能测试测量)将随机分配以接收单个活动(n = 24)或假(n = 24)TDC(20分钟,3-ma)。分别在左和右DLPFC上分别将阳极和阴极电极放置。刺激与工作记忆任务同时发生,该任务恰好在TDC发作后5分钟开始。使用3 Tesla扫描仪(SIEMENS PRISMA模型)在主动和假TDC之后直接进行结构和静止状态(RS-FMRI)扫描,该扫描仪配备了64个通道头线圈。主要结果将是大脑激活的变化(衡量大胆响应)和工作记忆表现(准确性,反应时间)。
JL Burgess - 2 个荣誉和奖项 理查德·金·梅隆基金会生命科学总统奖学金 2020 - 2021 科学荣誉协会 Sigma Xi 准会员 2020 年 6 月 达特茅斯学院计算机科学高级荣誉 2020 年 6 月 • Christopher G. Reed 科学竞赛论文陈述 詹姆斯·O.·弗里德曼总统学者(津贴/研究奖) 2018 年夏季 - 2019 年春季 PSYC 81.10“注意力和意识的神经基础”优异表现奖 2019 年冬季 AIT-Budapest 高分认可 2018 年秋季 西弗吉尼亚州查尔斯顿国家青少年科学营 (NYSC) 亚利桑那州代表 2016 年夏季 • 通过竞争性选拔参加这个针对高中毕业生的国家科学领导力计划,所有费用均由R., Kleinman, JE, & Rhodes, CH (2019). DLPFC 转录组定义了两个