生物颗粒通常充满负电荷,而施用的颗粒可以积极或负电荷,并且由于流体变化而可以更改电荷。带电的颗粒被相反电荷的相关带电物种包围,形成了电气双层。当带电的载体和生物分子处于近距离接近时,它们相关的带电层将重叠。如果两种材料的收费相同,则会引起排斥,但是如果它们相反,则会引起吸引力。DLVO理论以Derjaguin和Landau,Verwey和Overbeek的名字命名。DLVO理论描述了两个相同电荷彼此接近的粒子之间的净相互作用。在等离子体中,离子强度使得次级最小值可能是可能的,因此相同电荷的材料将在该区域显示出净吸引力。在分离的短距离上,不同的力占主导地位,在该区域,表面性质变得重要。可能会合理地断言,由于生物分子通常是负电荷的(为了防止在生物环境中的电荷相互作用),因此最好将管理载体设计为也是负责(或至少没有积极的)。在大多数情况下,这不足以防止调理。
(或溶剂混合物),可以进一步加工成可打印或可涂层的墨水。这些悬浮液的行为通常由Derjaguin – landau – verwey -overbeek(DLVO)理论描述,[3]暗示纳米片在悬浮液中的浓度具有上限,其上限在悬浮液变为不稳定的上限。[4]然而,高浓度悬浮液(墨水)对于形成渗透的粒子网络是必需的,[5]并满足高通量打印和涂层方法的风湿性要求(例如,高粘度)。无论其浓度如何,悬浮液在热力学上都是不稳定的,并且颗粒倾向于通过聚集来减少其表面能量。[6]为了降低沉积速率,必须最小化溶剂和2D材料之间的表面能量差,[3]将分散培养基的选择限制在溶解性包膜可能不适合子分类处理的一些溶剂上。在传统的墨水配方中,添加剂(例如formantant,粘合剂和流变学修饰符)用于解决上述问题,并将2D物质置换到可打印或可涂层的油墨中。[7-10]例如,需要大浓度的聚合物粘合剂(例如70 mg ml-1乙酸纤维素丁酸酯),以将涂抹油墨的粘度提高到适合筛网打印的水平。[11]由于典型的添加剂会对电子特性产生不利影响(例如,
(或溶剂混合物),可进一步加工成可印刷或可涂覆的油墨。这些悬浮液的行为通常用 Derjaguin-Landau-Verwey-Overbeek (DLVO) 理论描述,[3] 这意味着悬浮液中纳米片的浓度有一个上限,超过该上限悬浮液就会变得不稳定。[4] 尽管如此,高浓度悬浮液(油墨)对于形成渗透粒子网络是必要的,[5] 并且满足高通量印刷和涂层方法的流变学要求(例如高粘度)。无论浓度如何,悬浮液在热力学上都是不稳定的,并且粒子倾向于通过聚集来降低其表面能。[6] 为了降低沉降速度,必须最小化溶剂和 2D 材料之间的表面能差异,[3] 这使得分散介质的选择限制为少数溶剂,而这些溶剂的溶解度范围可能不适合后续加工。在传统的油墨配方中,为了解决上述问题,将二维材料悬浮液加工成可印刷或可涂覆的油墨,需要使用表面活性剂、粘合剂和流变改性剂等添加剂。[7–10] 例如,需要高浓度的聚合物粘合剂(如70 mg mL-1乙酸丁酸纤维素)来将石墨烯油墨的粘度提高到适合丝网印刷的水平。[11] 由于典型的添加剂会对电子性能产生不利影响(例如,
提出了统计热力学变异标准,用于研究金(AU)纳米颗粒可逆聚类中的热滞后。在实验上,采用了瞬时平衡映射分析来表征其热力学表征,在纳米溶剂和电化学水平(UV-VIS-NIR光谱,SLS/SAXS,ZETA电位)上进行进一步的测量。从理论上讲,它被成功地解释为热力学循环,促使纳米群体具有从热量和铺路到纳米聚集热发动机的有用工作的潜力。考虑到滞后压的病毒膨胀,为具有给定病毒系数的稀释系统推导了熵措施。这使我们能够发现相关颗粒电位参数的作用(即表面电势,纳米颗粒的大小,Debye的长度,Hamaker Energy)在滞后发作时的等温和等温变化中。当临时(DLVO)的成对电势控制纳米级的第二个病毒系数时,将开发在水盐溶液(NaCl)中的球形Au纳米颗粒(NaCl)。尤其是,变分标准可以预测加热和冷却路径之间的压降,这可能是在某些能量再分配的基础上(例如订购/重组电动双重
溶液[1,2]是自发形成[3](混合的负吉布斯自由能,∆ g mix <0)的单相系统,而悬浮液[4,5]是具有亚稳态的两相系统[6](∆ g mix> 0)。溶液的平衡性能[7,8]遵守等库热力学。 [9]悬浮液已通过Der- Jaguin – Landau – Verwey-Overbeek(DLVO)理论成功解释,[8,10]也可以琐碎地修改以建模一些解决方案。 [2,4,5,11]鉴于混合的自由能(∆ g混合)是形成溶液的关键驱动力,因此已广泛使用量热法来准确测量与溶剂中混合分子相关的热力学量化。 缓慢的沉降提供了一种可视化悬架系统中相对不稳定性的简便方法。 [12]然而,对于纳米尺度对象,例如纳米颗粒以及生物大分子,尤其是蛋白质,溶液和悬浮液之间的区别变得非常复杂。 量热标志通常太小而无法现实地测量,并且同样的分散时间变为多年,因此观察到它在实验上是不合理的(例如,因为可能发生其他现象,例如降解等其他现象)。 因此,按单次确定纳米尺度中具有特征大小的物体的分散是否形成解决方案或悬架仍然是一个开放的研究问题。 这对于纳米材料和蛋白质尤为重要。 关于该主题有大量文献。 Bergin等。 lin等。 Yang等人也采用了一种激光散射方法。溶液的平衡性能[7,8]遵守等库热力学。[9]悬浮液已通过Der- Jaguin – Landau – Verwey-Overbeek(DLVO)理论成功解释,[8,10]也可以琐碎地修改以建模一些解决方案。[2,4,5,11]鉴于混合的自由能(∆ g混合)是形成溶液的关键驱动力,因此已广泛使用量热法来准确测量与溶剂中混合分子相关的热力学量化。缓慢的沉降提供了一种可视化悬架系统中相对不稳定性的简便方法。[12]然而,对于纳米尺度对象,例如纳米颗粒以及生物大分子,尤其是蛋白质,溶液和悬浮液之间的区别变得非常复杂。量热标志通常太小而无法现实地测量,并且同样的分散时间变为多年,因此观察到它在实验上是不合理的(例如,因为可能发生其他现象,例如降解等其他现象)。因此,按单次确定纳米尺度中具有特征大小的物体的分散是否形成解决方案或悬架仍然是一个开放的研究问题。这对于纳米材料和蛋白质尤为重要。关于该主题有大量文献。Bergin等。lin等。Yang等人也采用了一种激光散射方法。[13]使用扫描探针显微镜证明碳纳米管(CNT)可以在稀释后自发去角质。这可能表明CNT正在解决方案中,但是总是很难排除热能的效果。[14]使用动态光散射来确定金纳米颗粒中热驱动的溶解/降水循环的可逆性(AUNPS)。他们发现该过程在温度[15]中完全可逆,并得出结论认为他们的AUNP正在溶液中。测量CDSE-稳定性纳米晶体 - 配体复合物的溶解度。[16]可再现和完全可逆的温度驱动的尖锐浊度变化(±1 K之内)表明它们的颗粒正在溶液中。Centrone等。[17]使用光密度测量来确定其AUNP的饱和浓度。此测量还意味着颗粒在溶液中。Doblas等。 [18]Doblas等。[18]