DMAC研究小组在应对高性能和可持续综合制造领域的复杂挑战方面处于最前沿。DMAC多学科致力于开发开创性的新解决方案,这些解决方案无缝地整合了尖端的材料科学,复杂的制造过程和创新思维。DMAC研究涵盖了复合材料的整个生命周期,从可持续材料开发到先进的制造工艺以及有效的寿命终止管理,通过回收。拥抱数字时代,我们将行业4.0技术整合到我们的制造过程中,以提高精确度,质量控制和可扩展性。敏锐地关注成本效益,我们努力平衡高性能要求和效果和可及性。我们致力于开发多功能复合材料,以及将数字化位置的整合作为领导者,以寻求复合制造业中的可持续解决方案。应用区域
DMAC 研究小组处于解决高性能和可持续复合材料制造领域复杂挑战的前沿。DMAC 多学科致力于开发突破性的新解决方案,无缝集成尖端材料科学、复杂的制造工艺和创新思维。DMAC 研究涵盖复合材料的整个生命周期,从可持续材料开发到先进的制造工艺,再到回收利用的高效报废管理。拥抱数字时代,我们将工业 4.0 技术融入我们的制造流程,以提高精度、质量控制和可扩展性。我们敏锐地关注成本效益,努力在高性能要求与可负担性和可访问性之间取得平衡。我们致力于开发多功能复合材料,并整合数字化,这使我们成为复合材料制造领域寻求可持续解决方案的领导者。应用领域
2D 和混合维度 2D/3D 钙钛矿已成为一种比 3D 钙钛矿更稳定、用途更广的太阳能电池吸收材料。[1] 然而,用于实现低维结构的大型有机间隔阳离子的绝缘性质阻碍了光活性材料中光生电荷的迁移。因此,生长具有相对于基底垂直排列的有机片的薄膜对于促进有效的电荷载流子提取至关重要。 [2] 此前,人们曾利用热铸造[3,4] 或通过使用替代溶剂(如 N,N-二甲基乙酰胺 (DMAc))[2] 或添加剂(如硫氰酸铵 (NH 4 SCN)、[5,6] 甲脒氯化物 (FACl)、[7–9] PbCl 2 [10] 和甲基氯化铵 (MACl) [11,12])修改钙钛矿 (PSK) 前体溶液来诱导此类材料的择优取向。
Items Contents Target microcomputer R9A06G032NGBG (RZ/N1D) R9A06G033NGBG (RZ/N1S) CPU Arm ® Cortex ® -A7 Arm ® Cortex ® -M3 Operating frequency Main clock: 40MHz System clock: 125MHz Cortex-A7: 500MHz (4 multiplication of the system clock) Cortex-M3:125MHz MSEBI_HCLK:125MHz驱动力强度MSEBI时钟销:除时钟以外的8mA引脚:4mA操作电压3.3V集成开发环境IR ARM 8.30.2裸露金属驱动程序的版本8.30.2版本CPU董事会RZ/N1扩展板外部SRAM连接板(不销售)外部SRAM RENESAS RMLV0816BGSB-4S2(512K Word x 16bit)
聚酰亚胺是半导体工业中广泛使用的介电材料。然而,固化反应过程中产生的气体会腐蚀电子电路,从而导致可靠性问题。可以使用 EGA-MS(使用 Double-Shot Pyrolyzer)(技术说明编号 PYA3-001)以及 TGA 研究这种气体释放。图 1 显示了聚酰亚胺薄膜的固化反应。首先,将 BPDA 和 3,3'-DDS 在较低温度下加热以生成聚酰胺酸。接下来,将材料进一步加热到较高温度以生成固化的聚酰亚胺。TGA 曲线(图 2)显示了固化过程中的重量损失。在 100~350ºC 和 350~450ºC 处可以清楚地看到两个不同的反应阶段。图 3 显示了 EGA-MS 对此过程的研究结果。图 2 中第一阶段 TGA 重量损失与图 3 区域 A 中演化的材料相匹配,第二阶段重量损失与区域 B 中的 EGA-MS 数据相匹配。EGA 产生的化合物通过 GC 分离和测定。使用 MS,选择离子监测显示图 3 中一些感兴趣的化合物的分布。这些结果表明,DMAc、CO2 和 H2O 是在固化过程的第一阶段产生的,而 CO2、SO2 和苯胺是在第二阶段产生的。正如这个例子所示,EGA 是解决聚合物材料问题的极其有用的工具。
在这项研究中,使用相位反转方法和浸没技术在非溶剂环境中使用磺化聚乙烯磺酮开发了纳米滤膜。聚乙烯基吡咯烷酮(PVP)用作孔形成剂,二甲基乙酰氨酰胺(DMAC)用作溶剂。这些膜的固有疏水性归因于它们的磺化聚乙烯成分,这是通过引入的氧化石墨烯纳米颗粒来缓解的。此外,将曙红单体引入氧化石墨烯,以增强氧化石墨烯纳米片的分散体。各种表征技术,包括电子显微镜,傅立叶转换红外(FT-IR)光谱,能量分散性X射线(EDX)光谱,渗透率测试,盐排斥,通量测量,接触角度分析和水含量评估,以实现修改后的MEMBRANES。电子显微镜图像示出了在表面下方的多孔空隙形成,并在改良的膜内形成了更宽的通道。ft-ir分析显示,曙红Y-GO纳米片中存在官能团(O = C-BR)。引入曙红纳米片的引入导致渗透率明显变化,盐排斥增加,尤其是硫酸钠(Na 2 So 4)。此外,纳米颗粒包含显着改善了亲水性和增强的水含量。此外,添加纳米颗粒导致孔隙度和孔径的增加。这种最佳的纳米颗粒浓度突出了研究的关键发现。最终,校正样品包括0.01 wt%的纳米颗粒表现出较高的性能,尤其是在盐通透性和硫酸钠(Na 2 So 4)中,与其他样品相比。
聚(芳基醚),形成了大量的大环寡聚物。[8,9]在反应的初始阶段,双足与碳酸钠或碳酸钾(或氢氧化钾)反应,从而产生了许多盐沉淀,从而阻碍了反应混合物的搅拌。由于盐的溶解度差而产生的高稀释条件,在反应混合物中形成了环状化合物。这意味着反应中的速率控制步骤是盐的溶解。Miyatake和Hlil发现,可以使用高速均质器可以改善这种反应系统中的环化问题。高强度混合增加了盐的表面积,因此有助于其溶解。[9]在几分钟内获得具有低分子量分布的非常高的分子量多形成量。与合成的线性聚(芳基醚)的典型反应相反,该特定梯子聚合物的形成更为复杂。在方案1中可以看出,两个单体都有四个反应性组。因此,四苯酚盐的溶解度甚至低于双苯酚和循环的溶解度,更容易形成。另外,一个单体中多个反应组的存在增加了交联的可能性。也观察到,如果它们的分子量高于10 000 da,则聚合物或循环将从反应混合物(如果将DMAC或DMF用作溶剂)中沉淀出来。我们发现在这一点上,对于较低的单体和低聚物浓度,常见的级增长聚合反应进一步进行并不容易,因为循环形成更容易形成。此外,交联发生迅速发生,因为OH和F组从沉淀的聚合物表面随机伸展,其链条折叠,线圈和包装在一起,并与其他OH和F组随机反应。
钢筋混凝土结构——“通过形状体现力量” HM Pawar O'shell 先生:一般来说,钢筋混凝土结构应始终保持 150 毫米的钢筋间距标准。在本例中,学生们仅凭对力线的理解,就将结构顶部的钢筋间距增加到了 750 毫米。O'shell 没有任何高科技生产系统,而是依靠人类机器人(学生和非熟练工人的手)的想法。从设计概念化到结构施工,再到项目最终完成,整个建造过程在 20 个工作日内完成。印度蒂鲁吉拉帕利 CARE 建筑学院的学生创造了“o'shell”原型,以探索形式与力的关系。该实验项目旨在促进重要的动手体验,同时以直观和有趣的方式建立对基于张力的曲面结构的理解。在导师 balaji rajasekaran (dmac 组) 的指导下,这项工作成为学生程序设计模块的一部分。o'shell 项目是一项现场练习,让学生有机会根据现场参数创建建筑响应。这包括决定结构的方向、基础网格和初始框架。这项实验还让学生有机会看到整个工作,从最初的设计开发到结构的实现。施工过程的第一步是挖掘地面以形成底座梁。此后,学生们一起搭建钢结构。通过利用钢的抗拉性能,该项目采用了非标准/非线性过程,以现场主动弯曲作为设计驱动力,无需任何模板或模板来固定混凝土或引导几何形状。基础框架是使用现场参数得出的,然后根据团队对应力线方法的理解对钢材进行编织和弯曲,以指导概念结构设计。 B] 钢筋混凝土礁石:邦政府已批准该项目。为了提高鱼类产量并为渔民提供生计支持,将在 Thiruvananthapuram 和 Poovar 渔村附近安装 400 块人工鱼礁。这项耗资 3.75 亿卢比的鱼类产量提高计划是耗资 47.5 亿卢比的 Vizhinjam 修复项目的一部分,旨在恢复即将建成的国际深水海港所影响的渔民并向他们提供补偿。整体结构:两百个整体三角形钢筋混凝土 (RCC) 礁石模块将很快被放入 Kollamcode、Paruthiyoor、Valiyathura、Kochuthura、Puthiyathura、Pallom 和 Adimalathura 渔村附近沿海的海域。另外 200 个钢筋水泥礁模块将安装在该地区更南部的 Poovar 渔村海岸附近。总共将建造一个由 400 个礁模块组成的人工集群。人工礁被认为是附着生物的良好栖息地,附着生物是一群微小的浮游生物,是杂食性和草食性鱼类的主要食物来源。预计黄貂鱼、电鳐、龙虾、鲹鱼、鲹鱼和水蚤将到达这些人工礁石以捕食小鱼。除了提高沿海鱼类的整体供应量外,人工礁石群还将振兴水生环境,充当产卵和育苗场,减少侦察捕鱼时间,并为因特大洪水而流离失所的双体船渔民提供生计