1.2 点列出的机场构成了运营利益相关者的临界数量,以实现扩展 AMAN 和集成 AMAN/DMAN 功能所期望的网络性能提升。如果这些机场和所有其他相关运营利益相关者能够同时操作该功能,这些好处将更快实现。这需要根据必须在部署计划中定义的商定时间表同步和协调扩展 AMAN 和 AMAN/DMAN 集成的实施,包括相关投资,以避免地理范围内的实施差距。还需要同步以确保所有相关利益相关者都拥有必要的基础设施来交换轨迹信息(i4D 配置文件)并确保计量点的约束合规性。
摘要 —机场协同决策 (A-CDM) 概念为机场提供了切实可行的解决方案,可提高交通准时性和可预测性,并可能减少延误、噪音和污染。A-CDM 的一个主要特点是离港管理 (DMAN):可以预测跑道起飞顺序,从而可以在登机口关闭发动机的情况下将很大一部分延误转移,而不会影响剩余的交通。在此过程中,延误起飞的登机口占用率不可避免地会增加,因此机场布局必须提供足够的登机口,并且登机口的分配必须足够稳健,以应对起飞延误。在本文中,我们介绍了一种估算由于 DMAN 起飞前调度而导致的登机口延误的方法,然后我们提出了一种稳健的登机口分配算法,并评估了该算法在巴黎戴高乐国际机场当前和增加的交通量下的性能。结果表明,与当前做法相比,这种稳健的登机口分配方式显著减少了登机口冲突的数量。索引术语 — 出发管理、登机口分配、稳健性
缺乏更高级别的 TMA 优化。需求容量平衡 (DCB) 扩展 TMA (E-TMA) 管理工具的引入应通过汇集信息并考虑在 E-TMA 级别优化交通流来解决信息驻留在多个系统中的问题。各种 AMAN、DMAN、现有 DCB 和本地流量管理工具都将向此 E-TMA 级别工具提供信息,旨在更全面地优化交通流。E-TMA 将作为单个节点进行管理,由一系列较小的节点组成(例如机场)。
-提供服务:机场管制服务;飞行信息服务;警报服务;ATS 系统容量和空中交通流量管理 -通信 -ATC 许可和 ATC 指令 -协调(协调程序、工具和协调方法……) -高度测量和高度分配(地形净空 -分离:出发飞机之间的分离;出发飞机与到达飞机的分离;着陆飞机与前方着陆或出发飞机的分离;基于时间的尾流湍流纵向分离;减小的最小分离标准 -机载和地面安全网 -数据显示 -运行环境(模拟):获取有关运行环境的信息 确保运行环境的完整性;验证运行程序的时效性;交接 -提供机场管制服务:负责提供;交通管理过程(信息收集、观察、交通预测、交通监测、适应性和后续行动);航空地面灯光;机场管制塔向飞机提供信息;跑道使用中;机场交通管制;空中交通管制;管理出发飞机;管理到达飞机;管理 SVFR 交通;低能见度操作;具有先进系统支持的机场管制服务(AMAN、DMAN、自动冲突/入侵工具、警报和解决咨询工具、自动辅助
致谢 作者谨向瑞典航天界表示感谢;感谢瑞典国家航天委员会的 Kerstin Fredga 教授、Per Tegnér、Per Nobinder、Silja Strömberg、Lennart Nordh 博士等;感谢 Göran Johansson、Olle Norberg、Claes-Göran Borg、Peter Möller、Hans Eckersand、Peter Sohtell、Per Zetterquist、Jörgen Hartnor、Tord Freygård 以及航天工业内众多其他太空爱好者。在瑞典国防界,我要感谢国防物资管理局的 Manuel Wik、Mats Lindhé、Lars Andersson、Thomas Ödman、Björn Jonsson 和 Curt Eidefeldt;感谢瑞典国防学院的 Bo Huldt 教授邀请我为战略年鉴做出贡献;瑞典武装部队的 Anders Eklund、Anders Frost、Urban Ivarsson、Lars Carlstein、Göran Tode、Rickard Nordenberg、Ulf Kurkiewicz 和 Peter Wivstam;以及瑞典国防无线电研究所的 Bo Lithner。法国外交部(对外关系部 - 文化关系总局)提供的奖学金使我得以在 1982 年至 1983 年期间在巴黎度过了三个学期,在巴黎大学学习理论物理学和天体物理学。我还要感谢林雪平技术大学的 Torsten Ericsson 教授在我担任巴黎助理技术专员期间的指导,以及 KTH 的 Anders Eliasson 博士。还要感谢爱因斯坦和薛定谔的前学生、帕维亚大学(意大利)的 Bruno Bertotti 教授,他认可我在日内瓦联合国“防止外空军备竞赛特设委员会”的工作,并邀请我作为第四届卡斯蒂利翁切洛国际会议“促进核裁军 - 防止核武器扩散”的发言人。关于我在日内瓦的工作
首批用于治疗心力衰竭的基因疗法正在临床上取得进展。Rocket Pharmaceuticals 计划很快启动一项关键的 II 期研究,研究一种针对 Danon 病患者的基因疗法。Danon 病是一种 X 连锁显性遗传疾病,会导致成年早期进行性心力衰竭和死亡。如果成功,该试验将鼓励大量基因药物开发者(表 1)相信,在不同的疾病环境下,抑制甚至逆转进行性心力衰竭是可行的。此外,德克萨斯大学西南医学中心 Eric Olson 实验室的三篇具有里程碑意义的论文和哈佛医学院 Christine Seidman 实验室的一项补充研究表明,CRISPR-Cas9 编辑、碱基编辑和主要编辑都可用于纠正小鼠心脏病的遗传模型。现在已经建立了技术概念验证,用于治疗由 MYH7 和 RBM20 基因突变引起的心肌病,以及破坏由钙/钙调蛋白依赖性蛋白激酶 IIδ 慢性过度激活引起的病理信号传导机制,这种机制存在于许多心力衰竭患者中。该领域的一个重要里程碑是 FDA 去年批准百时美施贵宝的口服心脏肌球蛋白抑制剂 Camzyos (mavacamten) 用于治疗阻塞性肥厚性心肌病 (HCM)。Camzyos 是首个针对最常见的遗传性心脏病的潜在病理的疗法。最初由 MyoKardia 公司开发,该公司由 Christine Seidman 和她的丈夫 Jonathan Seidman(也是哈佛医学院的学生)创立,后来被 Bristol Myers Squibb 收购,其工作原理是降低肌动蛋白和肌球蛋白之间过度形成横桥而引起的收缩力升高,肌动蛋白和肌球蛋白是负责产生力量的蛋白质,使肌肉
致谢 作者谨向瑞典航天界表示感谢;感谢瑞典国家航天委员会的 Kerstin Fredga 教授、Per Tegnér、Per Nobinder、Silja Strömberg、Lennart Nordh 博士等;感谢 Göran Johansson、Olle Norberg、Claes-Göran Borg、Peter Möller、Hans Eckersand、Peter Sohtell、Per Zetterquist、Jörgen Hartnor、Tord Freygård 以及航天工业内众多其他太空爱好者。在瑞典国防界,我要感谢国防物资管理局的 Manuel Wik、Mats Lindhé、Lars Andersson、Thomas Ödman、Björn Jonsson 和 Curt Eidefeldt;感谢瑞典国防学院的 Bo Huldt 教授邀请我为战略年鉴做出贡献;瑞典武装部队的 Anders Eklund、Anders Frost、Urban Ivarsson、Lars Carlstein、Göran Tode、Rickard Nordenberg、Ulf Kurkiewicz 和 Peter Wivstam;以及瑞典国防无线电研究所的 Bo Lithner。法国外交部(对外关系部 - 文化关系总局)提供的奖学金使我得以在 1982 年至 1983 年期间在巴黎度过了三个学期,在巴黎大学学习理论物理学和天体物理学。我还要感谢林雪平技术大学的 Torsten Ericsson 教授在我担任巴黎助理技术专员期间的指导,以及 KTH 的 Anders Eliasson 博士。还要感谢爱因斯坦和薛定谔的前学生、意大利帕维亚大学的 Bruno Bertotti 教授,他认可我在日内瓦联合国“防止外空军备竞赛特设委员会”的工作,并邀请我作为第四届卡斯蒂利翁切洛国际会议“促进核裁军 - 防止核武器扩散”的发言人。关于我在日内瓦的工作